研究论文

氢氧化铯催化温和有氧环化反应高效构建喹喔啉杂环衍生物

  • 黄真茹 ,
  • 金国顺 ,
  • 陈天煜 ,
  • 冯斌 ,
  • 史鑫康 ,
  • 陈敏方 ,
  • 华路生 ,
  • 徐清
展开
  • a 温州大学化学与材料工程学院 浙江温州 325035
    b 江苏恒安化工有限公司 江苏淮安 223100

收稿日期: 2024-01-11

  修回日期: 2024-04-02

  网络出版日期: 2024-04-30

基金资助

国家自然科学基金(21672163); 江苏省双创计划资助项目

Efficient Construction of Quinoxaline Derivatives by Cesium Hydroxide-Catalyzed Mild Aerobic Annulation Reaction

  • Zhenru Huang ,
  • Guoshun Jin ,
  • Tianyu Chen ,
  • Bin Feng ,
  • Xinkang Shi ,
  • Minfang Chen ,
  • Lusheng Hua ,
  • Qing Xu
Expand
  • a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035
    b Jiangsu Hengan Chemical Co., Ltd., Huaian, Jiangsu 223100

Received date: 2024-01-11

  Revised date: 2024-04-02

  Online published: 2024-04-30

Supported by

National Natural Science Foundation of China(21672163); Innovation and Entrepreneurship Project of Jiangsu Province

摘要

研究发现简单无机碱氢氧化铯是邻苯二胺与2-羟基-2-苯基苯乙酮有氧环化反应构建喹喔啉骨架的最佳催化剂, 即催化量氢氧化铯可在室温、空气的温和条件下催化反应高效进行. 本方法适用于一系列邻二胺和α-羟基酮类化合物, 底物范围较广. 由于不使用过渡金属催化剂, 且催化剂氢氧化铯具有很好的水溶性, 简单水洗即可将其从产物中除去, 因此产物没有铯及过渡金属残留. 此方法采用方便易得的空气为氧化剂、无需使用其它化学计量的氧化剂, 唯一副产物为水, 因而可为喹喔啉杂环衍生物的高效构建提供一种无过渡金属参与、温和高效、绿色实用的方法.

本文引用格式

黄真茹 , 金国顺 , 陈天煜 , 冯斌 , 史鑫康 , 陈敏方 , 华路生 , 徐清 . 氢氧化铯催化温和有氧环化反应高效构建喹喔啉杂环衍生物[J]. 有机化学, 2024 , 44(9) : 2933 -2942 . DOI: 10.6023/cjoc202401008

Abstract

Simple inorganic base cesium hydroxide is found to be the best catalyst for aerobic annulation reaction of o-phenylenediamine and α-hydroxy-2-phenylacetophenone in constructing the quinoxaline skeleton, i.e., catalytic amount of cesium hydroxide can catalyze the reaction efficiently under mild conditions of room temperature in air atmosphere. This method is extendable to a series of vicinal diamines and α-hydroxyl ketones, thus having a relatively broad substrate scope. As no transition metal catalyst is required and cesium hydroxide highly water-soluble, cesiume can be effectively removed by washing with water, the prodcuts can be obtained without cesium and transition metal residue contamination. This reaction requires no other stoichiometric oxidants but the readily available and convenient air as the oxidant, and the only byproduct is water, hence a transition metal-free, mild and efficient, green and practical approach for efficient construction of the quinoxaline derivatives is provided.

参考文献

[1]
(a) Abdelfattah, M. S.; Kazufumi, T.; Ishibashi, M. J. Nat. Prod. 2010, 73, 1999.
[1]
(b) Barua, M. G.; Escalada, J. P.; Bregliani, M.; Pajares, A.; Criado, S. Redox Rep. 2017, 22, 282.
[1]
(c) Aarthi, A.; Vikineswary, S.; Vengadesh, P. Int. J. Food Prop. 2016, 19, 1173.
[1]
(d) Lalteur, G.; Oncuer, C.; Oger, R. Bull. OEPP 1981, 11, 331.
[1]
(e) Qi, J. Y.; Li, T. H.; Chan, A. S. C. Bioorg. Med. Chem. Lett. 2003, 13, 3561.
[1]
(f) Morales-Castellanos, J. J.; Ramírez-Hernández, K.; Gómez- Flores, N. S.; Rodas-Suárez, O. R.; Peralta-Cruz, J. Molecules 2012, 17, 5164.
[1]
(g) Anand, S.; Devi K. R., S. J. Chem. Technol. Biotechnol. 2024, 99, 426.
[1]
(h) Kong, L.; Meng, J.; Tian, W.; Liu, J.; Hu, X.; Jiang, Z. H.; Zhang, W.; Li, Y.; Bai, L. P. ACS Omega 2022, 7, 1380.
[1]
(i) Harsha, K. B.; Rangappa, S.; Preetham, H. D.; Swaroop, T. R.; Gilandoust, M.; Rakesh, K. S.; Rangappa, K. S. ChemistrySelect 2018, 3, 5228.
[1]
(j) Zhao, F.; Sun, T.; Wang, Y.; Zhan, Y.; Yang, W. J. Dyes Pigm. 2021, 196, 109763.
[1]
(k) Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D. P.; Corrêa, A. G.; Ueda-Nakamura, T.; Filho, B. P. D.; Martín, J. J.; Nakamura, C. V. Bioorg. Med. Chem. 2018, 26, 4065.
[1]
(l) Tarpada, U. P.; Thummar, B. B.; Raval, D. K. Arabian J. Chem. 2017, 10, 2902.
[1]
(m) Meka, G.; Chintakunta, R. Results Chem. 2023, 5, 100783.
[1]
(n) Pery, N.; Ijaz, F.; Rizvi, N. B.; Munawar, M. A.; Shafiq, M. I. Pak. J. Zool. 2021, 53, 281.
[1]
(o) Enyedy, I. J.; Wang, J.; Zaman, W. A.; Johnsonb, K. M.; Wang, S. Bioorg. Med. Chem. Lett. 2002, 12, 1775.
[1]
(p) Cogo, J.; Kaplum, V.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Eur. J. Med. Chem. 2015, 90, 107.
[1]
(q) Kaplum, V.; Cogo, J.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Antimicrob. Agents Chemother. 2016, 60, 3433.
[1]
(r) You, L.; Cho, E. J.; Leavitt, J.; Ma, L. C.; Montelione, G. T.; Anslyn, E. V.; Krug, R. M.; Ellington, A.; Robertus, J. D. Bioorg. Med. Chem. Lett. 2011, 21, 3007.
[1]
(s) Abdeen, S.; Salim, N.; Mammadova, N.; Summers, C. M.; Frankson, R.; Ambrose, A. J.; Anderson, G. G.; Schultz, P. G.; Horwich, A. L.; Chapman, E.; Johnson, S. M. Bioorg. Med. Chem. Lett. 2016, 26, 3127.
[1]
(t) Zhang, N.; Yu, Z.; Yang, X.; Zhou, Y.; Tang, Q.; Hu, P.; Wang, J.; Zhang, S. L.; Wang, M. W.; He, Y. Eur. J. Med. Chem. 2018, 157, 37.
[1]
(u) Hameed, S.; Khan, K. M.; Taslimi, P.; Salar, U.; Taskin-Tok, T.; Kisa, D.; Saleem, F.; Solangi, M.; Ahmed, M. H. U.; Rani, K. Int. J. Biol. Macromol. 2022, 211, 653.
[1]
(v) Suwanhom, P.; Saetang, J.; Khongkow, P.; Nualnoi, T.; Tipmanee, V.; Lomlim, L. Molecules 2021, 26, 4895
[1]
(w) Bandyopadhyay, D.; Cruz, J.; Morales, L. D.; Arman, H. D.; Cuate, E.; Lee, Y. S.; Banik, B. K.; Kim, D. J. Future Med. Chem. 2013, 5, 1377.
[2]
(a) Tardif, F.; Leroux, G. Weed Technol. 1991. 5, 525.
[2]
(b) Joy, M.; Abit, M.; Al-Khatib, K. Pestic. Biochem. Phys. 2013, 105, 24.
[2]
(c) Zeng, D.; Shi, H.; Li, B.; Wang, M.; Song, B. J. Agric. Food Chem. 2006, 54, 8682.
[2]
(d) Liu, X. H.; Yu, W.; Min, L. J.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Wu, H. K. Cantrell, C. L.; Bajsa-Hirschel, J.; Hua, X. W.; Duke, S. O. J. Agric. Food Chem. 2020, 68, 7324.
[3]
(a) Sonawane, N. D.; Rangnekar, D. W. J. Heterocycl. Chem. 2002, 39, 303.
[3]
(b) Brien, D. O.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881.
[3]
(c) Castro, P. P.; Zhao, G.; Masangkay, G. A.; Hernandez, C.; Gutierrez-Tunstad, L. M. Org. Lett. 2004, 6, 333.
[3]
(d) Lindner, B. D.; Zhang, Y.; H?fle, S.; Berger, N.; Teusch, C.; Jesper, M.; Hardcastle, K. I.; Qian, X.; Lemmer, U.; Colsmann, A.; Bunz, U. H. F.; Hamburger, M. J. Mater. Chem. C 2013, 1, 5718.
[3]
(e) Wang, Y.; Xu, B.; Sun, R.; Xu, Y. J.; Ge, J. F. J. Mater. Chem. B 2020, 8, 7466.
[3]
(f) Jing, Y. M.; Wang, F. Z.; Zheng, Y. X.; Zuo, J. L. J. Mater. Chem. C 2017, 5, 3714.
[3]
(g) Xu, K.; Li, Y. Y.; Si, Y.; He, Y. L.; Ma, J. B.; He, J.; Hou, H. W.; Li, K. J. Lumin. 2018, 204, 182.
[3]
(h) Ouakki, M.; Galai, M.; Benzekri, Z.; Verma, C.; Ech-chihbi, E.; Kaya, S.; Boukhris, S.; Ebenso, E. E.; Touhami, M. E.; Cherkaoui, M. Colloids Surf., A 2021, 611, 125810.
[3]
(i) Sun, L.; Jiang, X.; Yin, J. Prog. Org. Coat. 2010, 67, 225.
[3]
(j) Amaya-García, F.; Caldera, M.; Koren, A.; Kubicek, S.; Menche, J.; Unterlass, M. M. ChemSusChem 2021, 14, 1853.
[3]
(k) Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420.
[4]
(a) Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688.
[4]
(b) Agarwal, M.; Verma, K.; Pathak, G.; Pathak, S.; Mathur, J.; Kumar, M. ChemistrySelect 2023, 8, e202301448.
[4]
(c) Cui, Y.; Tang, X.-B.; Shao, C.-X.; Li, J.-T.; Sun, W.-H. Chin. J. Chem. 2005, 23, 589.
[4]
(d) Chen, Y.; Li, K.; Zhao, M.; Li, Y.; Chen, B. Tetrahedron Lett. 2013, 54, 1627.
[4]
(e) Gopalaiah, K.; Saini, A.; Chandrudu, S. N.; Rao, D. C.; Yadav, H.; Kumar, B. Org. Biomol. Chem. 2017, 15, 2259.
[4]
(f) Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320.
[4]
(g) Chaubey, T. N.; Borpatra, P. J.; Pandey, S. K. Org. Lett. 2023, 25, 5329.
[5]
(a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183.
[5]
(b) Tingoli, M.; Mazzella, M.; Panunzi, B.; Tuzi, A. Eur. J. Org. Chem. 2011, 399.
[5]
(c) Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G. Tetrahedron Lett. 2013, 54, 1003.
[5]
(d) Rashidizadeh, A.; Ghafuri, H.; Zand, H. R. E.; Goodarzi, N. ACS Omega 2019, 4, 12544.
[5]
(e) Bachhav, H. M.; Bhagat, S. B.; Telvekar, V. N. Tetrahedron Lett. 2011, 52, 5697.
[6]
(a) Meshram, H. M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 2580.
[6]
(b) Wan, J. P.; Gan, S. F.; Wu, J. M.; Pan, Y. Green Chem. 2009, 11, 1633.
[6]
(c) Harsha, K. B. Rangappa, K. S. RSC Adv. 2016, 6, 57154.
[7]
(a) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun. 2003, 2286.
[7]
(b) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788.
[7]
(c) Zhang, Z.; Xie, C.; Feng, L.; Ma, C. Synth. Commun. 2016, 46, 1507.
[7]
(d) Fan, L. Y.; Wei, L. Hua, W. J.; Li, X. X. Chin. Chem. Lett. 2014, 25, 1203.
[7]
(e) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusareb, S. R.; Pawara, R. P. Tetrahedron Lett. 2005, 46, 7183.
[8]
(a) Rao, K. T. V.; Sai Prasad, P. S.; Lingaiah, N. J. Mol. Catal. A: Chem. 2009, 312, 65.
[8]
(b) Dang, G. H.; Vu, Y. T. H.; Dong, Q. A.; Le, D. T.; Truong, T.; Phan, N. T. S. Appl. Catal. A 2015, 491, 189.
[8]
(c) Tamalika, B.; Tridib, K. S.; Sampak, S. Catal. Sci. Technol. 2012, 2, 2216.
[8]
(d) Meng, X.; Bi, X.; Yu, C.; Chen, G.; Chen, B.; Jing, Z.; Zhao, P. Green Chem. 2018, 20, 4638.
[8]
(e) Godino-Ojer, M.; Morales-Torres, S.; Maldonado-Hódar, F. J.; Pérez-Mayoral, E. Catal. Today 2023, 423, 114014.
[9]
(a) Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321.
[9]
(b) Choa, C. S.; Oh, S. G. J. Mol. Catal. A: Chem. 2007, 276, 205.
[9]
(d) Cho, C. S.; Ren, W. X. J. Organomet. Chem. 2009, 694, 3215.
[10]
(a) Hara, T.; Takami, Y.; Ichikuni, N.; Shimazu, S. Chem. Lett. 2012, 41, 488.
[10]
(b) Jeena, V.; Robinson, R. S. Tetrahedron Lett. 2014, 55, 642.
[10]
(c) Kamal, A.; Babu, K. S.; Faazil, S.; Hussaini, S. M. A.; Shaik, A. B. RSC Adv. 2014, 4, 46369.
[11]
(a) Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971.
[11]
(b) Nasar, M. K.; Kumar, R. R.; Perumal, S. Tetrahedron Lett. 2007, 48, 2155.
[11]
(c) Ibrahim, M.M.; Grau, D.; Hampel, F.; Tsogoeva, S. B. Eur. J. Org. Chem. 2014, 7, 1401.
[12]
(a) Schmidt, B.; Krehl, S.; Hauke, S. J. Org. Chem. 2013, 78, 5427.
[12]
(b) Ma, J.; Zou, Q.; Yin, G.; Li, F. Tetrahedron Lett. 2023, 126, 154646.
[13]
(a) Wang, W.; Shen, Y.; Meng, X.; Zhao, M.; Chen, Y.; Chen, B. Org. Lett. 2011, 13, 4514.
[13]
(b) Mousset, C.; Provot, O.; Hamze, A.; Bignon, J.; Brion, J.-D.; Alami, M. Tetrahedron 2008, 64, 4287.
[13]
(c) Hazarika, D.; Phukan, P. Tetrahedron 2017, 73, 1374.
[13]
(d) Das, A.; Thomas, K. R. J. Asian. J. Org. Chem. 2020, 9, 1820.
[13]
(e) Li, L.; Liu, Z.; Hu, X. Adv. Synth. Catal. 2021, 363, 4272.
[14]
(a) Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633.
[14]
(b) Shee, S.; Panja, D.; Kundu, S. J. Org. Chem. 2020, 85, 2775.
[14]
(c) Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Chem. Commun., 2018, 54, 6883.
[14]
(d) Zeng, P.; Li, X.; Li, L.; Liang, C.; Zhang, J.; Peng, T. J. Organomet. Chem. 2023, 993, 122713.
[14]
(e) Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. ChemCatChem 2015, 7, 57.
[15]
(a) Zhang, C.; Xu, Z.; Zhang, L.; Jiao. N. Tetrahedron 2012, 68, 5258.
[15]
(b) Cho, C. S.; Ren, W. X.; Shim, S. C. Tetrahedron Lett. 2007, 48, 4665.
[15]
(c) Nguyen, L. A.; Nguyen, T. T. T.; Ngo, Q. A.; Nguyen, T. B. Adv. Synth. Catal. 2022, 364, 2748.
[16]
(a) Xu, Q.; Huang, X.; Yuan, J. J. Org. Chem. 2005, 70, 6948.
[16]
(b) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144.
[16]
(c) Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Green Chem. 2014, 16, 287.
[16]
(d) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139.
[17]
(a) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem.-Eur. J. 2015, 21, 9988.
[17]
(b) Yao, S.; Zhou, K. J.; Wang, J. B.; Cao, H. G.; Yu, L.; Wu, J. Z.; Qiu, P. H.; Xu, Q. Green Chem. 2017, 19, 2945.
[17]
(c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12, 3043.
[17]
(d) Wang, Q.; Zhu, B.; Zhang, X.; Shi, G.; Liu, J.; Xu, Q. Asian J. Org. Chem. 2022, 11, e202200056.
[17]
(e) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18, 7079.
[17]
(f) Wang, Q.; Zhang, X.; Han, F.; Liu, J.; Xu, Q. ChemSusChem 2021, 14, 2866.
[18]
(a) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33, 18 (in Chinese).
[18]
(徐清, 李强, 有机化学, 2013, 33, 18.)
[18]
(b) Ma, X.; Su, C.; Xu, Q. Topics in Current Chemistry, Eds.: Guillena, G.; Ramón, D. J., Vol. 374:27, Springer, Berlin, Heidel- berg, 2016, pp. 1-74.
[18]
(c) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem. Int. Ed. 2014, 53, 225.
[18]
(d) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354 , 2671.
[18]
(e) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355, 73.
[18]
(f) Zhang, E.; Tian, H.; Xu, S.; Yu, X.-C.; Xu, Q. Org. Lett. 2013, 15, 2704.
[18]
(g) Li, S.; Li, X.; Li, Q.; Yuan, Q.; Shi, X.; Xu, Q. Green Chem. 2015, 17, 3260.
[18]
(h) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.
[18]
(i) Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Green Chem. 2016, 18, 3940.
[18]
(j) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
[18]
(k) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408.
[18]
(l) Ou, W.; Xiang, X.-D.; Zou, R.; Xu, Q.; Loh, K. P.; Su, C.-L. Angew. Chem. Int. Ed. 2021, 60, 6357.
[18]
(m) Ma, X.; Zhu, Y.; Yu, J.; Yan, R.; Xie, X.; Huang, L.; Wang, Q.; Chang, X.; Xu, Q. Org. Chem. Front. 2022, 9, 3204.
[18]
(n) Li, X.; Li, S.; Li, Q.; Dong, X.; Li, Y.; Yu, X.; Xu, Q. Tetrahedron 2016, 72, 264.
[18]
(o) Chen, T.; Han, F.; Li, S.; Liu, J.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2022, 42, 2914 (in Chinese).
[18]
(陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉, 徐清, 有机化学, 2022, 42, 2914.)
[18]
(p) Liu, J.; Han, F.; Li, S.; Chen, T.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2024, 44, 573 (in Chinese).
[18]
(刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清, 有机化学, 2024, 44, 573.)
[19]
For similar findings from other groups: (a) Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J. Tetrahedron Lett. 2008, 49, 5336.
[19]
(b) Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406.
[19]
(c) Donthiri, R. R.; Patil, R. D.; Adimurthy, S. Eur. J. Org. Chem. 2012, 4457.
[19]
(d) Xu, J.; Zhuang, R.; Bao, L.; Tang, G.; Zhao, Y. Green Chem. 2012, 14, 2384.
[20]
Meng, J. J.; Gao, M.; Lv, H.; Zhang, X, M. Org. Lett. 2015, 17, 1842.
[21]
More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem. 2006, 8, 91.
[22]
Niknam, K.; Saberi, D.; Mohagheghnejad, M. Molecules 2009, 14, 1915.
[23]
Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Green Chem. 2015, 17, 279.
[24]
Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873.
[25]
Sheng, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. Org. Lett. 2016, 18, 1378.
[26]
Nguyen, T. B.; Mac, D. H.; Tran, T. M. C.; Nguyen, B. N.; Cao, H. T. Org. Biomol. Chem. 2022, 20, 7226.
[27]
Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R. Tetrahedron Lett. 2012, 53, 2756.
[28]
Fowler, F. W.; Chen, S. J. J. Org. Chem. 1971, 36, 4025.
[29]
Ohta, A.; Inoue, A.; Watanabe, T. Heterocycles 1984, 22, 2317.
[30]
Reddy, B. V. S.; Ramesh, K.; Yadav, J. S. Synlett 2011, 2, 169.
[31]
Petrosyan, A.; Ehlers, P.; Reimann, S.; Ghochikyan, T. V.; Saghyan, A. S.; Spannenberg, A.; Lochbrunner, S.; Langer, P. Tetrahedron 2015, 71, 6803.
[32]
Gulevskaya, A. V.; Tonkoglazova, D. I.; Guchunov, A. S.; Misharev, A. D. Eur. J. Org. Chem. 2019, 4879.
[33]
Moshkina, T. N.; Nosova, E. V.; Lipunova, G. N.; Valova, M. S.; Charushin, V. N. Asian. J. Org. Chem. 2018, 7, 1080.
[34]
Ogg, R. A. Jr.; Bergstrom, F. W. J. Am. Chem. Soc. 1931, 53, 1846.
文章导航

/