氢氧化铯催化温和有氧环化反应高效构建喹喔啉杂环衍生物
收稿日期: 2024-01-11
修回日期: 2024-04-02
网络出版日期: 2024-04-30
基金资助
国家自然科学基金(21672163); 江苏省双创计划资助项目
Efficient Construction of Quinoxaline Derivatives by Cesium Hydroxide-Catalyzed Mild Aerobic Annulation Reaction
Received date: 2024-01-11
Revised date: 2024-04-02
Online published: 2024-04-30
Supported by
National Natural Science Foundation of China(21672163); Innovation and Entrepreneurship Project of Jiangsu Province
黄真茹 , 金国顺 , 陈天煜 , 冯斌 , 史鑫康 , 陈敏方 , 华路生 , 徐清 . 氢氧化铯催化温和有氧环化反应高效构建喹喔啉杂环衍生物[J]. 有机化学, 2024 , 44(9) : 2933 -2942 . DOI: 10.6023/cjoc202401008
Simple inorganic base cesium hydroxide is found to be the best catalyst for aerobic annulation reaction of o-phenylenediamine and α-hydroxy-2-phenylacetophenone in constructing the quinoxaline skeleton, i.e., catalytic amount of cesium hydroxide can catalyze the reaction efficiently under mild conditions of room temperature in air atmosphere. This method is extendable to a series of vicinal diamines and α-hydroxyl ketones, thus having a relatively broad substrate scope. As no transition metal catalyst is required and cesium hydroxide highly water-soluble, cesiume can be effectively removed by washing with water, the prodcuts can be obtained without cesium and transition metal residue contamination. This reaction requires no other stoichiometric oxidants but the readily available and convenient air as the oxidant, and the only byproduct is water, hence a transition metal-free, mild and efficient, green and practical approach for efficient construction of the quinoxaline derivatives is provided.
| [1] | (a) Abdelfattah, M. S.; Kazufumi, T.; Ishibashi, M. J. Nat. Prod. 2010, 73, 1999. |
| [1] | (b) Barua, M. G.; Escalada, J. P.; Bregliani, M.; Pajares, A.; Criado, S. Redox Rep. 2017, 22, 282. |
| [1] | (c) Aarthi, A.; Vikineswary, S.; Vengadesh, P. Int. J. Food Prop. 2016, 19, 1173. |
| [1] | (d) Lalteur, G.; Oncuer, C.; Oger, R. Bull. OEPP 1981, 11, 331. |
| [1] | (e) Qi, J. Y.; Li, T. H.; Chan, A. S. C. Bioorg. Med. Chem. Lett. 2003, 13, 3561. |
| [1] | (f) Morales-Castellanos, J. J.; Ramírez-Hernández, K.; Gómez- Flores, N. S.; Rodas-Suárez, O. R.; Peralta-Cruz, J. Molecules 2012, 17, 5164. |
| [1] | (g) Anand, S.; Devi K. R., S. J. Chem. Technol. Biotechnol. 2024, 99, 426. |
| [1] | (h) Kong, L.; Meng, J.; Tian, W.; Liu, J.; Hu, X.; Jiang, Z. H.; Zhang, W.; Li, Y.; Bai, L. P. ACS Omega 2022, 7, 1380. |
| [1] | (i) Harsha, K. B.; Rangappa, S.; Preetham, H. D.; Swaroop, T. R.; Gilandoust, M.; Rakesh, K. S.; Rangappa, K. S. ChemistrySelect 2018, 3, 5228. |
| [1] | (j) Zhao, F.; Sun, T.; Wang, Y.; Zhan, Y.; Yang, W. J. Dyes Pigm. 2021, 196, 109763. |
| [1] | (k) Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D. P.; Corrêa, A. G.; Ueda-Nakamura, T.; Filho, B. P. D.; Martín, J. J.; Nakamura, C. V. Bioorg. Med. Chem. 2018, 26, 4065. |
| [1] | (l) Tarpada, U. P.; Thummar, B. B.; Raval, D. K. Arabian J. Chem. 2017, 10, 2902. |
| [1] | (m) Meka, G.; Chintakunta, R. Results Chem. 2023, 5, 100783. |
| [1] | (n) Pery, N.; Ijaz, F.; Rizvi, N. B.; Munawar, M. A.; Shafiq, M. I. Pak. J. Zool. 2021, 53, 281. |
| [1] | (o) Enyedy, I. J.; Wang, J.; Zaman, W. A.; Johnsonb, K. M.; Wang, S. Bioorg. Med. Chem. Lett. 2002, 12, 1775. |
| [1] | (p) Cogo, J.; Kaplum, V.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Eur. J. Med. Chem. 2015, 90, 107. |
| [1] | (q) Kaplum, V.; Cogo, J.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Antimicrob. Agents Chemother. 2016, 60, 3433. |
| [1] | (r) You, L.; Cho, E. J.; Leavitt, J.; Ma, L. C.; Montelione, G. T.; Anslyn, E. V.; Krug, R. M.; Ellington, A.; Robertus, J. D. Bioorg. Med. Chem. Lett. 2011, 21, 3007. |
| [1] | (s) Abdeen, S.; Salim, N.; Mammadova, N.; Summers, C. M.; Frankson, R.; Ambrose, A. J.; Anderson, G. G.; Schultz, P. G.; Horwich, A. L.; Chapman, E.; Johnson, S. M. Bioorg. Med. Chem. Lett. 2016, 26, 3127. |
| [1] | (t) Zhang, N.; Yu, Z.; Yang, X.; Zhou, Y.; Tang, Q.; Hu, P.; Wang, J.; Zhang, S. L.; Wang, M. W.; He, Y. Eur. J. Med. Chem. 2018, 157, 37. |
| [1] | (u) Hameed, S.; Khan, K. M.; Taslimi, P.; Salar, U.; Taskin-Tok, T.; Kisa, D.; Saleem, F.; Solangi, M.; Ahmed, M. H. U.; Rani, K. Int. J. Biol. Macromol. 2022, 211, 653. |
| [1] | (v) Suwanhom, P.; Saetang, J.; Khongkow, P.; Nualnoi, T.; Tipmanee, V.; Lomlim, L. Molecules 2021, 26, 4895 |
| [1] | (w) Bandyopadhyay, D.; Cruz, J.; Morales, L. D.; Arman, H. D.; Cuate, E.; Lee, Y. S.; Banik, B. K.; Kim, D. J. Future Med. Chem. 2013, 5, 1377. |
| [2] | (a) Tardif, F.; Leroux, G. Weed Technol. 1991. 5, 525. |
| [2] | (b) Joy, M.; Abit, M.; Al-Khatib, K. Pestic. Biochem. Phys. 2013, 105, 24. |
| [2] | (c) Zeng, D.; Shi, H.; Li, B.; Wang, M.; Song, B. J. Agric. Food Chem. 2006, 54, 8682. |
| [2] | (d) Liu, X. H.; Yu, W.; Min, L. J.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Wu, H. K. Cantrell, C. L.; Bajsa-Hirschel, J.; Hua, X. W.; Duke, S. O. J. Agric. Food Chem. 2020, 68, 7324. |
| [3] | (a) Sonawane, N. D.; Rangnekar, D. W. J. Heterocycl. Chem. 2002, 39, 303. |
| [3] | (b) Brien, D. O.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881. |
| [3] | (c) Castro, P. P.; Zhao, G.; Masangkay, G. A.; Hernandez, C.; Gutierrez-Tunstad, L. M. Org. Lett. 2004, 6, 333. |
| [3] | (d) Lindner, B. D.; Zhang, Y.; H?fle, S.; Berger, N.; Teusch, C.; Jesper, M.; Hardcastle, K. I.; Qian, X.; Lemmer, U.; Colsmann, A.; Bunz, U. H. F.; Hamburger, M. J. Mater. Chem. C 2013, 1, 5718. |
| [3] | (e) Wang, Y.; Xu, B.; Sun, R.; Xu, Y. J.; Ge, J. F. J. Mater. Chem. B 2020, 8, 7466. |
| [3] | (f) Jing, Y. M.; Wang, F. Z.; Zheng, Y. X.; Zuo, J. L. J. Mater. Chem. C 2017, 5, 3714. |
| [3] | (g) Xu, K.; Li, Y. Y.; Si, Y.; He, Y. L.; Ma, J. B.; He, J.; Hou, H. W.; Li, K. J. Lumin. 2018, 204, 182. |
| [3] | (h) Ouakki, M.; Galai, M.; Benzekri, Z.; Verma, C.; Ech-chihbi, E.; Kaya, S.; Boukhris, S.; Ebenso, E. E.; Touhami, M. E.; Cherkaoui, M. Colloids Surf., A 2021, 611, 125810. |
| [3] | (i) Sun, L.; Jiang, X.; Yin, J. Prog. Org. Coat. 2010, 67, 225. |
| [3] | (j) Amaya-García, F.; Caldera, M.; Koren, A.; Kubicek, S.; Menche, J.; Unterlass, M. M. ChemSusChem 2021, 14, 1853. |
| [3] | (k) Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420. |
| [4] | (a) Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688. |
| [4] | (b) Agarwal, M.; Verma, K.; Pathak, G.; Pathak, S.; Mathur, J.; Kumar, M. ChemistrySelect 2023, 8, e202301448. |
| [4] | (c) Cui, Y.; Tang, X.-B.; Shao, C.-X.; Li, J.-T.; Sun, W.-H. Chin. J. Chem. 2005, 23, 589. |
| [4] | (d) Chen, Y.; Li, K.; Zhao, M.; Li, Y.; Chen, B. Tetrahedron Lett. 2013, 54, 1627. |
| [4] | (e) Gopalaiah, K.; Saini, A.; Chandrudu, S. N.; Rao, D. C.; Yadav, H.; Kumar, B. Org. Biomol. Chem. 2017, 15, 2259. |
| [4] | (f) Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320. |
| [4] | (g) Chaubey, T. N.; Borpatra, P. J.; Pandey, S. K. Org. Lett. 2023, 25, 5329. |
| [5] | (a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183. |
| [5] | (b) Tingoli, M.; Mazzella, M.; Panunzi, B.; Tuzi, A. Eur. J. Org. Chem. 2011, 399. |
| [5] | (c) Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G. Tetrahedron Lett. 2013, 54, 1003. |
| [5] | (d) Rashidizadeh, A.; Ghafuri, H.; Zand, H. R. E.; Goodarzi, N. ACS Omega 2019, 4, 12544. |
| [5] | (e) Bachhav, H. M.; Bhagat, S. B.; Telvekar, V. N. Tetrahedron Lett. 2011, 52, 5697. |
| [6] | (a) Meshram, H. M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 2580. |
| [6] | (b) Wan, J. P.; Gan, S. F.; Wu, J. M.; Pan, Y. Green Chem. 2009, 11, 1633. |
| [6] | (c) Harsha, K. B. Rangappa, K. S. RSC Adv. 2016, 6, 57154. |
| [7] | (a) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun. 2003, 2286. |
| [7] | (b) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788. |
| [7] | (c) Zhang, Z.; Xie, C.; Feng, L.; Ma, C. Synth. Commun. 2016, 46, 1507. |
| [7] | (d) Fan, L. Y.; Wei, L. Hua, W. J.; Li, X. X. Chin. Chem. Lett. 2014, 25, 1203. |
| [7] | (e) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusareb, S. R.; Pawara, R. P. Tetrahedron Lett. 2005, 46, 7183. |
| [8] | (a) Rao, K. T. V.; Sai Prasad, P. S.; Lingaiah, N. J. Mol. Catal. A: Chem. 2009, 312, 65. |
| [8] | (b) Dang, G. H.; Vu, Y. T. H.; Dong, Q. A.; Le, D. T.; Truong, T.; Phan, N. T. S. Appl. Catal. A 2015, 491, 189. |
| [8] | (c) Tamalika, B.; Tridib, K. S.; Sampak, S. Catal. Sci. Technol. 2012, 2, 2216. |
| [8] | (d) Meng, X.; Bi, X.; Yu, C.; Chen, G.; Chen, B.; Jing, Z.; Zhao, P. Green Chem. 2018, 20, 4638. |
| [8] | (e) Godino-Ojer, M.; Morales-Torres, S.; Maldonado-Hódar, F. J.; Pérez-Mayoral, E. Catal. Today 2023, 423, 114014. |
| [9] | (a) Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321. |
| [9] | (b) Choa, C. S.; Oh, S. G. J. Mol. Catal. A: Chem. 2007, 276, 205. |
| [9] | (d) Cho, C. S.; Ren, W. X. J. Organomet. Chem. 2009, 694, 3215. |
| [10] | (a) Hara, T.; Takami, Y.; Ichikuni, N.; Shimazu, S. Chem. Lett. 2012, 41, 488. |
| [10] | (b) Jeena, V.; Robinson, R. S. Tetrahedron Lett. 2014, 55, 642. |
| [10] | (c) Kamal, A.; Babu, K. S.; Faazil, S.; Hussaini, S. M. A.; Shaik, A. B. RSC Adv. 2014, 4, 46369. |
| [11] | (a) Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971. |
| [11] | (b) Nasar, M. K.; Kumar, R. R.; Perumal, S. Tetrahedron Lett. 2007, 48, 2155. |
| [11] | (c) Ibrahim, M.M.; Grau, D.; Hampel, F.; Tsogoeva, S. B. Eur. J. Org. Chem. 2014, 7, 1401. |
| [12] | (a) Schmidt, B.; Krehl, S.; Hauke, S. J. Org. Chem. 2013, 78, 5427. |
| [12] | (b) Ma, J.; Zou, Q.; Yin, G.; Li, F. Tetrahedron Lett. 2023, 126, 154646. |
| [13] | (a) Wang, W.; Shen, Y.; Meng, X.; Zhao, M.; Chen, Y.; Chen, B. Org. Lett. 2011, 13, 4514. |
| [13] | (b) Mousset, C.; Provot, O.; Hamze, A.; Bignon, J.; Brion, J.-D.; Alami, M. Tetrahedron 2008, 64, 4287. |
| [13] | (c) Hazarika, D.; Phukan, P. Tetrahedron 2017, 73, 1374. |
| [13] | (d) Das, A.; Thomas, K. R. J. Asian. J. Org. Chem. 2020, 9, 1820. |
| [13] | (e) Li, L.; Liu, Z.; Hu, X. Adv. Synth. Catal. 2021, 363, 4272. |
| [14] | (a) Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633. |
| [14] | (b) Shee, S.; Panja, D.; Kundu, S. J. Org. Chem. 2020, 85, 2775. |
| [14] | (c) Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Chem. Commun., 2018, 54, 6883. |
| [14] | (d) Zeng, P.; Li, X.; Li, L.; Liang, C.; Zhang, J.; Peng, T. J. Organomet. Chem. 2023, 993, 122713. |
| [14] | (e) Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. ChemCatChem 2015, 7, 57. |
| [15] | (a) Zhang, C.; Xu, Z.; Zhang, L.; Jiao. N. Tetrahedron 2012, 68, 5258. |
| [15] | (b) Cho, C. S.; Ren, W. X.; Shim, S. C. Tetrahedron Lett. 2007, 48, 4665. |
| [15] | (c) Nguyen, L. A.; Nguyen, T. T. T.; Ngo, Q. A.; Nguyen, T. B. Adv. Synth. Catal. 2022, 364, 2748. |
| [16] | (a) Xu, Q.; Huang, X.; Yuan, J. J. Org. Chem. 2005, 70, 6948. |
| [16] | (b) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144. |
| [16] | (c) Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Green Chem. 2014, 16, 287. |
| [16] | (d) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139. |
| [17] | (a) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem.-Eur. J. 2015, 21, 9988. |
| [17] | (b) Yao, S.; Zhou, K. J.; Wang, J. B.; Cao, H. G.; Yu, L.; Wu, J. Z.; Qiu, P. H.; Xu, Q. Green Chem. 2017, 19, 2945. |
| [17] | (c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12, 3043. |
| [17] | (d) Wang, Q.; Zhu, B.; Zhang, X.; Shi, G.; Liu, J.; Xu, Q. Asian J. Org. Chem. 2022, 11, e202200056. |
| [17] | (e) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18, 7079. |
| [17] | (f) Wang, Q.; Zhang, X.; Han, F.; Liu, J.; Xu, Q. ChemSusChem 2021, 14, 2866. |
| [18] | (a) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33, 18 (in Chinese). |
| [18] | (徐清, 李强, 有机化学, 2013, 33, 18.) |
| [18] | (b) Ma, X.; Su, C.; Xu, Q. Topics in Current Chemistry, Eds.: Guillena, G.; Ramón, D. J., Vol. 374:27, Springer, Berlin, Heidel- berg, 2016, pp. 1-74. |
| [18] | (c) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem. Int. Ed. 2014, 53, 225. |
| [18] | (d) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354 , 2671. |
| [18] | (e) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355, 73. |
| [18] | (f) Zhang, E.; Tian, H.; Xu, S.; Yu, X.-C.; Xu, Q. Org. Lett. 2013, 15, 2704. |
| [18] | (g) Li, S.; Li, X.; Li, Q.; Yuan, Q.; Shi, X.; Xu, Q. Green Chem. 2015, 17, 3260. |
| [18] | (h) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774. |
| [18] | (i) Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Green Chem. 2016, 18, 3940. |
| [18] | (j) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649. |
| [18] | (k) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408. |
| [18] | (l) Ou, W.; Xiang, X.-D.; Zou, R.; Xu, Q.; Loh, K. P.; Su, C.-L. Angew. Chem. Int. Ed. 2021, 60, 6357. |
| [18] | (m) Ma, X.; Zhu, Y.; Yu, J.; Yan, R.; Xie, X.; Huang, L.; Wang, Q.; Chang, X.; Xu, Q. Org. Chem. Front. 2022, 9, 3204. |
| [18] | (n) Li, X.; Li, S.; Li, Q.; Dong, X.; Li, Y.; Yu, X.; Xu, Q. Tetrahedron 2016, 72, 264. |
| [18] | (o) Chen, T.; Han, F.; Li, S.; Liu, J.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2022, 42, 2914 (in Chinese). |
| [18] | (陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉, 徐清, 有机化学, 2022, 42, 2914.) |
| [18] | (p) Liu, J.; Han, F.; Li, S.; Chen, T.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2024, 44, 573 (in Chinese). |
| [18] | (刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清, 有机化学, 2024, 44, 573.) |
| [19] | For similar findings from other groups: (a) Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J. Tetrahedron Lett. 2008, 49, 5336. |
| [19] | (b) Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406. |
| [19] | (c) Donthiri, R. R.; Patil, R. D.; Adimurthy, S. Eur. J. Org. Chem. 2012, 4457. |
| [19] | (d) Xu, J.; Zhuang, R.; Bao, L.; Tang, G.; Zhao, Y. Green Chem. 2012, 14, 2384. |
| [20] | Meng, J. J.; Gao, M.; Lv, H.; Zhang, X, M. Org. Lett. 2015, 17, 1842. |
| [21] | More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem. 2006, 8, 91. |
| [22] | Niknam, K.; Saberi, D.; Mohagheghnejad, M. Molecules 2009, 14, 1915. |
| [23] | Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Green Chem. 2015, 17, 279. |
| [24] | Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873. |
| [25] | Sheng, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. Org. Lett. 2016, 18, 1378. |
| [26] | Nguyen, T. B.; Mac, D. H.; Tran, T. M. C.; Nguyen, B. N.; Cao, H. T. Org. Biomol. Chem. 2022, 20, 7226. |
| [27] | Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R. Tetrahedron Lett. 2012, 53, 2756. |
| [28] | Fowler, F. W.; Chen, S. J. J. Org. Chem. 1971, 36, 4025. |
| [29] | Ohta, A.; Inoue, A.; Watanabe, T. Heterocycles 1984, 22, 2317. |
| [30] | Reddy, B. V. S.; Ramesh, K.; Yadav, J. S. Synlett 2011, 2, 169. |
| [31] | Petrosyan, A.; Ehlers, P.; Reimann, S.; Ghochikyan, T. V.; Saghyan, A. S.; Spannenberg, A.; Lochbrunner, S.; Langer, P. Tetrahedron 2015, 71, 6803. |
| [32] | Gulevskaya, A. V.; Tonkoglazova, D. I.; Guchunov, A. S.; Misharev, A. D. Eur. J. Org. Chem. 2019, 4879. |
| [33] | Moshkina, T. N.; Nosova, E. V.; Lipunova, G. N.; Valova, M. S.; Charushin, V. N. Asian. J. Org. Chem. 2018, 7, 1080. |
| [34] | Ogg, R. A. Jr.; Bergstrom, F. W. J. Am. Chem. Soc. 1931, 53, 1846. |
/
| 〈 |
|
〉 |