可溶性疏水性标签辅助的高效连续流液相多肽合成
收稿日期: 2024-03-12
修回日期: 2024-04-08
网络出版日期: 2024-05-11
Highly Efficient Continuous Flow Liquid-Phase Peptide Synthesis Using a Soluble Hydrophobic Tag
Received date: 2024-03-12
Revised date: 2024-04-08
Online published: 2024-05-11
开发绿色、高效的合成工艺是实现治疗性多肽商业化生产的迫切要求. 报道了在微反应器中一种新型疏水性硅基载体双(4-((叔丁基二甲基硅基)氧基)苯基)甲胺(SPPM)辅助进行连续流动液相多肽合成(LPPS)的方法, 该方案由酰胺化模块(微通道反应器, 偶联时间9.0 s)、脱保护模块(填充床反应器, 脱保护时间31.4 s)和萃取洗涤模块(微通道混合器, 洗涤18.0 s)组成. 采用绿色溶剂(用乙酸乙酯代替被限制使用的N,N-二甲基甲酰胺)和N-苄氧羰基氨基酸(用氢解脱保护代替易制毒管制化学品哌啶脱保护), 合成了高纯度的(粗品收率>90%)五肽-3. 这种精确控制反应时间和温度的连续流方法, 从绿色和可持续的角度出发, 为大规模多肽合成开辟了新的前景.
彭伟 , 程蓉 , 刘豪 , 刘冬梅 , 苏贤斌 . 可溶性疏水性标签辅助的高效连续流液相多肽合成[J]. 有机化学, 2024 , 44(9) : 2876 -2888 . DOI: 10.6023/cjoc202403015
The development of a green and efficient synthetic process is an urgent requirement for the commercial production of therapeutic peptides. In a microreactor, a novel hydrophobic silicon-based carrier bis(4-((tert-butyldimethylsilyl)oxy)- phenyl)methylamine (SPPM) assisted continuous flow liquid phase polypeptide synthesis (LPPS) method was reported. The protocol consists of an amidation module (microchannel reactor, coupling time 9.0 s), a deprotection module (packed bed reactor, deprotection time 31.4 s) and an extraction and washing module (microchannel mixer, washing 18.0 s). High-purity (crude yield >90%) pentapeptide-3 was synthesized by using green solvent (ethyl acetate instead of restricted N,N-dimethyl- formamide) and N-benzyloxycarbonyl-amino acid (hydrogenolysis instead of piperidine deprotection). This continuous flow method with precise control of short reaction time and temperature opens up new prospects for large-scale peptide synthesis from a green and sustainable perspective.
| [1] | (a) Lau, J. L.; Dunn, M. K. Bioorg. Med. Chem. Lett. 2018, 26, 2700. |
| [1] | (b) Tanemura, Y.; Mochizuki, Y.; Kumachi, S. Biology 2015, 4, 161. |
| [1] | (c) Lin, K. J. V.; Emrick, J. J.; Kelly, M. J. S.; Herzig, V. Cell 2019, 178, 1362. |
| [1] | (d) Drucker, D. J. Nat. Rev. Drug Discovery 2020, 19, 277. |
| [2] | (a) Thomas, K.; Markus, M. Methods Mol. Bol. 2022, 2384, 175. |
| [2] | (b) Ceccato, M. L.; Chenu, J.; Mery, J.; Follet, M.; Calas, B. Tetrahedron Lett. 1990, 31, 6189. |
| [2] | (c) Nicolas, E.; Clemente, J.; Ferrer, T. Tetrahedron 1997, 53, 3179. |
| [3] | (a) Vincent, d. V.; Charlotte, R. J. Am. Chem. Soc. 1953, 75, 4879. |
| [3] | (b) Fan, J. H.; Bian, Y. N.; Su, X. B. Chem. J. Chin. Univ. 2018, 39, 2679 (in Chinese). |
| [3] | (范佳辉, 卞亚楠, 苏贤斌, 高等学校化学学报, 2018, 39, 2679.) |
| [3] | (c) Lawrenson, S. B.; Arav, R.; North, M. Green Chem. 2017, 19, 1685. |
| [4] | Rasmussen, J. H. Bioorg. Med. Chem. 2018, 26, 2914. |
| [5] | Jadhav, S.; Seufert, W.; Lechner, C. Chimia 2021, 75, 476. |
| [6] | Eggen, I. F.; Bakelaar, F. T.; Petersen, A. J. Pept. Sci. 2005, 11, 633. |
| [7] | Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. |
| [8] | Yin, H.; Chen, X. T. Acta Chim. Sinica 2022, 80, 444 (in Chinese). |
| [8] | (尹昊, 陈西同, 化学学报, 2022, 80, 444.) |
| [9] | Zhuang, H.; Hao, H.; Qiu, Y. Chin. J. Chem. 2023, 41, 2010. |
| [10] | Li, T.; Zhang, Y. Peng, P. Chin. J. Chem. 2022, 40, 1571. |
| [11] | Al Musaimi, O.; de la Torre, B. G.; Albericio, F. Green Chem. 2020, 22, 996. |
| [12] | Bonnamour, J.; Metro, T. X.; Martinez, J.; Lamaty, F. Green Chem. 2013, 15, 1116. |
| [13] | (a) Egelund, P. H. G.; Jadhav, S. ACS Sustainable Chem. Eng. 2021, 9, 14202. |
| [13] | (b) Martin, V.; Jadhav, S.; Egelund, P. H. G. Green Chem. 2021, 23, 3295. |
| [13] | (c) Xu, B. F.; Yang, S.; Zhu, J. M.; Ma, Y. D.; Zhao, G.; Guo, Y.; Xu, L. Chem. Res. Chin. Univ. 2014, 30, 103. |
| [14] | Shemyakin, M. M.; Ovchinnikov, Y. A. Tetrahedron Lett. 1965, 6, 2323. |
| [15] | Pillai, V. N. R.; Mutter, M.; Bayer, E. J. Org. Chem. 1980, 45, 5364. |
| [16] | (a) Bayer, E.; Mutter, M. Nature 1972, 237, 512. |
| [16] | (b) Bayer, E.; Mutter, M.; Uhmann, R.; Polster, J.; Mauser, H. J. Am. Chem. Soc. 1974, 96, 7333. |
| [16] | (c) Musaimi, O.; Albericio, F. Green Chem. 2020, 22, 996. |
| [16] | (d) Mutter, M.; Hagenmaier, H.; Bayer, E. Angew. Chem. Int. Ed. 1971, 10, 811. |
| [16] | (e) Mutter, M.; Bayer, E. Angew. Chem. Int. Ed. 1974, 13, 88. |
| [16] | (f) Bayer, E.; Mutter, M. Chem. Ber. 1974, 107, 1344. |
| [17] | Hitoshi, T.; Tomoyuki, O. Bull. Chem. Soc. Jpn. 2001, 74, 733. |
| [18] | Takahashi, D.; Yamamoto, T. Tetrahedron Lett. 2012, 53, 1936. |
| [19] | Takahashi, D. Org. Lett. 2012, 14, 4514. |
| [20] | (a) Li, H.; Chao, J.; Qin, C. G. J. Org. Chem. 2020, 85, 6271. |
| [20] | (b) Li, H.; Chao, J.; Qin, C. G. Org. Chem. Front. 2020, 7, 689. |
| [20] | (c) Li, H.; Chao, J.; Qin, C. G. Org. Lett. 2020, 22, 3323. |
| [21] | Lu, D.; Wang, S.; Yin, H. Synlett 2020, 31, 1163. |
| [22] | (a) Tetsu, T.; Hidekazu, O.; Shu, K. Nature 2015, 520, 329. |
| [22] | (b) Sheng, B. S.; Li, C.; Liu, Y. Y.; Wang, A. J.; Wang, Y.; Zhang, J.; Liu, W. X. Chem. J. Chin. Univ. 2019, 40, 1365. |
| [23] | Adamo, A.; Beingessner, R. L.; Behnam, M. Science 2016, 352, 61. |
| [24] | Szloszar, A. ChemistrySelect 2017, 2, 6036. |
| [25] | Audubert, C.; Gamboa, M. O. J.; Lebel, H. Angew. Chem. 2017, 129, 6391. |
| [26] | (a) Cheng, D.; Chen, F. E. Chem. Ind. Eng. Prog. 2019, 38, 556 (in Chinese). |
| [26] | (程荡, 陈芬儿, 化工进展, 2019, 38, 556.) |
| [26] | (b) Gordon, C. P. Org. Biomol. Chem. 2018, 16, 180. |
| [27] | Loubiere, K.; Oelgemoller, M.; Aillet, T.; Dechy-Cabaret, O.; Prat, L. Chem. Eng. Process. 2016, 104, 120. |
| [28] | Mizuno, K.; Nishiyama, Y.; Ogaki, T.; Terao, K.; Ikeda, H.; Kakiuchi, K. J. Photochem. Photobiol., C 2016, 29, 107. |
| [29] | Fuse, S.; Otake, Y.; Nakamura, H. Eur. J. Org. Chem. 2017, 6466. |
| [30] | Otake, Y.; Nakamura, H.; Fuse, S. Tetrahedron Lett. 2018, 59, 1691. |
| [31] | Politano, F.; Oksdath-Mansilla, G. Org. Process Res. Dev. 2018, 22, 1045. |
| [32] | Di Filippo, M.; Bracken, C.; Baumann, M. Molecules 2020, 25, 356. |
| [33] | Bacsa, B.; Kappe, C. O. Nat. Protoc. 2007, 2, 2222. |
| [34] | Szloszar, A.; Mandity, I. M. J. Flow Chem. 2018, 8, 21. |
| [35] | Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z. P.; Pentelute, B. L. Science 2020, 368, 980. |
| [36] | Mandity, I. M.; Olasz, B.; Otvos, S. B.; Fulop, F. ChemSusChem 2014, 7, 3172. |
| [37] | Nishimura, S.; Higashi, N.; Koga, T. J. Polym. Sci., Part A: Polym. Chem. 2019, 10, 71. |
| [38] | Fuse, S.; Mifune, Y.; Takahashi, T. Angew. Chem. Int. Ed. 2014, 53, 851. |
| [39] | Otake, Y. Adachi, K. Fuse, S. React. Chem. Eng. 2023, 8, 863. |
| [40] | Li, S. J.; Yang, Y.; Cui, Y. Y.; Su, X. B. Chem. J. Chin. Univ. 2020, 41, 1559 (in Chinese). |
| [40] | (李士杰, 杨洋, 崔营营, 苏贤斌, 高等学校化学学报, 2020, 41, 1559.) |
| [41] | Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F. Nat. Catal. 2019, 2, 10. |
/
| 〈 |
|
〉 |