研究论文

钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃

  • 杜佳言 ,
  • 刘俊涛 ,
  • 刘桂霞 ,
  • 黄正
展开
  • a 上海科技大学物质科学与技术学院 上海 201210
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 中国科学院大学 上海 200032
    c 国科大杭州高等研究院化学与材料科学学院 杭州 310024
共同第一作者.

收稿日期: 2024-04-12

  修回日期: 2024-05-06

  网络出版日期: 2024-05-11

基金资助

国家重点研发计划(2021YFA1500100); 国家自然科学基金(21825109); 国家自然科学基金(21821002); 国家自然科学基金(22072178); 国家自然科学基金(22293013); 中国科学院战略性先导科技专项(XDB0610000); 中国科学院稳定支持基础研究领域青年团队计划(YSBR-094); 上海市科学技术委员会(23JC1404400); 中科院青年交叉团队(JCTD-2021-11)

Cobalt-Catalyzed Regio- and Stereoselective Isomerization of Terminal Alkenes to trans-2-Alkenes

  • Jiayan Du ,
  • Juntao Liu ,
  • Guixia Liu ,
  • Zheng Huang
Expand
  • a School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032
    c School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
These authors contributed equally to this work.

Received date: 2024-04-12

  Revised date: 2024-05-06

  Online published: 2024-05-11

Supported by

National Key R&D Program of China(2021YFA1500100); National Natural Science Foundation of China(21825109); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22072178); National Natural Science Foundation of China(22293013); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0610000); CAS Project for Young Scientists in Basic Research(YSBR-094); Science and Technology Commission of Shanghai Municipality(23JC1404400); CAS Youth Interdisciplinary Team(JCTD-2021-11)

摘要

以双膦基PCP型钴络合物为催化剂, 发展了一种高效、反式选择性的1-烯烃单异构化反应. 该反应为反式-2-烯烃的合成提供了一种原子经济性方法, 具有条件温和、底物范围广、区域选择性和立体选择性优异等优点. 机理研究表明该异构反应可能经历Co-H反应途径, 涉及可逆的烯烃插入/β-H消除, 并且烯丙基位的β-H消除可能是反应的决速步.

本文引用格式

杜佳言 , 刘俊涛 , 刘桂霞 , 黄正 . 钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃[J]. 有机化学, 2024 , 44(9) : 2889 -2897 . DOI: 10.6023/cjoc202404018

Abstract

An efficient and E-selective monoisomerization of 1-alkenes is developed with a bis(phosphine)-based PCP-type Co complex as the catalyst. The protocol provides an atom-economical approach to trans-2-alkenes with high regio- and stereoselectivity, featuring mild conditions and wide substrate scope. Mechanistic investigation supports a cobalt-hydride pathway involving reversible alkene insertion/β-H elimination, and the step of β-H elimination at the allylic position is likely the rate-determining step.

参考文献

[1]
Wang, E.-J. Stereoselective Alkene Synthesis, Springer-Verlag, 2012.
[2]
Takeda, T.; Tsubouchi, A. Org. React. 2013, 82, 1.
[3]
Holland, P. L. Acc. Chem. Res. 2015, 48, 1696.
[4]
Hilt, G. ChemCatChem 2014, 6, 2484.
[5]
Yu, X.; Zhao, H.; Li, P.; Koh, M. J. J. Am. Chem. Soc. 2020, 142, 18223.
[6]
Kapat, A.; Sperger, T.; Guven, S.; Schoenebeck, F. Science 2019, 363, 391.
[7]
Garhwal, S.; Kaushansky, A.; Fridman, N.; De Ruiter, G. Chem Catal. 2021, 1, 631.
[8]
(a) Ge, Q.; Meng, J.; Liu, H.; Yang, Z.; Wu, Z.; Zhang, W. Chin. J. Chem. 2022, 40, 2269.
[8]
(b) Ren, W.; Sun, F.; Chu, J.; Shi, Y. Org. Lett. 2020, 22, 1868.
[8]
(c) Thiery, E.; Chevrin, C.; Le Bras, J.; Harakat, D.; Muzart, J. J. Org. Chem. 2007, 72, 1859.
[8]
(d) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998.
[8]
(e) Chen, C.; Hou, C.; Chen, P.; Liu, G. Chin. J. Chem. 2020, 38, 346.
[9]
(a) Wang, Y.; Qin, C.; Jia, X.; Leng, X.; Huang, Z. Angew. Chem. Int. Ed. 2017, 56, 1614.
[9]
(b) Camp, A. M.; Kita, M. R.; Blackburn, P. T.; Dodge, H. M.; Chen, C.-H.; Miller, A. J. M. J. Am. Chem. Soc. 2021, 143, 2792.
[10]
(a) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357.
[10]
(b) Larsen, C. R.; Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2014, 136, 1226.
[10]
(c) Donohoe, T. J.; O'riordan, T. J. C.; Rosa, C. P. Angew. Chem. Int. Ed. 2009, 48, 1014.
[10]
(d) Trost, B. M.; Cregg, J. J.; Quach, N. J. Am. Chem. Soc. 2017, 139, 5133.
[10]
(e) Lai, Y.; Dai, W.-M. Chin. J. Chem. 2021, 39, 69.
[10]
(f) Zhao, L.; Wang, X.; Qiang, Q.; Zhao, X.; Liu, F.; Lu, S.; Rong, Z.-Q. Chin. J. Chem. 2024, 42, 1828.
[11]
(a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 9870.
[11]
(b) Martínez, J. I.; Smith, J. J.; Hepburn, H. B.; Lam, H. W. Angew. Chem. Int. Ed. 2016, 55, 1108.
[11]
(c) Qin, A.; Zhang, Q.; Qian, H.; Han, Y.; Ma, S. Chin. J. Chem. 2021, 39, 559.
[12]
(a) Liu, X.; Li, B.; Liu, Q. Synthesis 2019, 51, 1293.
[12]
(b) Xu, S.; Liu, G.; Huang, Z. Chin. J. Chem. 2021, 39, 585.
[12]
(c) Zhang, M.; Ji, Y.; Zhang, C. Chin. J. Chem. 2022, 40, 1608.
[12]
(d) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
[12]
(e) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[12]
(f) Li, Y.; Lu, X.; Fu, Y. CCS Chem. 2024, 6, 1130.
[12]
(g) Wu, L.; We, H.-L.; Shen, J.-F.; Chen, J.-Z.; Zhang, W.-B. Acta Chim. Sinica 2021, 79, 1331 (in Chinese).
[12]
(吴良, 魏瀚林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.)
[13]
(a) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788.
[13]
(b) Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.; Palmer, J. H. J. Am. Chem. Soc. 2016, 138, 7698.
[13]
(c) Liu, X.; Zhang, W.; Wang, Y.; Zhang, Z. X.; Jiao, L.; Liu, Q. J. Am. Chem. Soc. 2018, 140, 6873.
[13]
(d) Zhang, S.; Bedi, D.; Cheng, L.; Unruh, D. K.; Li, G.; Findlater, M. J. Am. Chem. Soc. 2020, 142, 8910.
[13]
(e) Zhao, J.; Cheng, B.; Chen, C.; Lu, Z. Org. Lett. 2020, 22, 837.
[13]
(f) Liu, H.; Cai, C.; Ding, Y.; Chen, J.; Liu, B.; Xia, Y. ACS Omega 2020, 5, 11655.
[14]
(a) Pünner, F.; Schmidt, A.; Hilt, G. Angew. Chem. Int. Ed. 2012, 51, 1270.
[14]
(b) Schmidt, A.; N?dling, A. R.; Hilt, G. Angew. Chem. Int. Ed. 2015, 54, 801.
[14]
(c) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J. Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945.
[14]
(d) Kim, D.; Pillon, G.; Diprimio, D. J.; Holland, P. L. J. Am. Chem. Soc. 2021, 143, 3070.
[15]
Kobayashi, T.; Yorimitsu, H.; Oshima, K. Chem. Asian. J. 2009, 4, 1078.
[16]
Meng, Q.-Y.; Schirmer, T. E.; Katou, K.; K?nig, B. Angew. Chem. Int. Ed. 2019, 58, 5723.
[17]
Liu, J.; Du, J.; Yu, F.; Gan, L.; Liu, G.; Huang, Z. ACS Catal. 2023, 13, 7995.
[18]
Molloy, J. J.; Morack, T.; Gilmour, R. Angew. Chem. Int. Ed. 2019, 58, 13654.
[19]
Massad, I.; Marek, I. ACS Catal. 2020, 10, 5793.
[20]
Biswas, S.; Huang, Z.; Choliy, Y.; Wang, D. Y.; Brookhart, M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2012, 134, 13276.
[21]
Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300.
[22]
Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962.
[23]
Rubel, C. Z.; Ravn, A. K.; Ho, H. C.; Yang, S.; Li, Z.-Q.; Engle, K. M.; Vantourout, J. C. Angew. Chem. Int. Ed. 2024, e202320081.
[24]
(a) Li, X.-R.; Zhang, R.-J.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J. Org. Chem. Front. 2024, 11, 646.
[24]
(b) Zhang, R.-J.; Li, X.-R.; Liang, R.-B.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J.; Wu, L.-Z. Org. Lett. 2024, 26, 591.
[25]
Kawamura, K. E.; Chang, A. S.-M.; Martin, D. J.; Smith, H. M.; Morris, P. T.; Cook, A. K. Organometallics 2022, 41, 486.
[26]
Liu, H.; Xu, M.; Cai, C.; Chen, J.; Gu, Y.; Xia, Y. Org. Lett. 2020, 22, 1193.
[27]
Movassaghi, M.; Ahmad, O. K. Angew. Chem. Int. Ed. 2008, 47, 8909.
文章导航

/