钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃
收稿日期: 2024-04-12
修回日期: 2024-05-06
网络出版日期: 2024-05-11
基金资助
国家重点研发计划(2021YFA1500100); 国家自然科学基金(21825109); 国家自然科学基金(21821002); 国家自然科学基金(22072178); 国家自然科学基金(22293013); 中国科学院战略性先导科技专项(XDB0610000); 中国科学院稳定支持基础研究领域青年团队计划(YSBR-094); 上海市科学技术委员会(23JC1404400); 中科院青年交叉团队(JCTD-2021-11)
Cobalt-Catalyzed Regio- and Stereoselective Isomerization of Terminal Alkenes to trans-2-Alkenes
Received date: 2024-04-12
Revised date: 2024-05-06
Online published: 2024-05-11
Supported by
National Key R&D Program of China(2021YFA1500100); National Natural Science Foundation of China(21825109); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22072178); National Natural Science Foundation of China(22293013); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0610000); CAS Project for Young Scientists in Basic Research(YSBR-094); Science and Technology Commission of Shanghai Municipality(23JC1404400); CAS Youth Interdisciplinary Team(JCTD-2021-11)
杜佳言 , 刘俊涛 , 刘桂霞 , 黄正 . 钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃[J]. 有机化学, 2024 , 44(9) : 2889 -2897 . DOI: 10.6023/cjoc202404018
An efficient and E-selective monoisomerization of 1-alkenes is developed with a bis(phosphine)-based PCP-type Co complex as the catalyst. The protocol provides an atom-economical approach to trans-2-alkenes with high regio- and stereoselectivity, featuring mild conditions and wide substrate scope. Mechanistic investigation supports a cobalt-hydride pathway involving reversible alkene insertion/β-H elimination, and the step of β-H elimination at the allylic position is likely the rate-determining step.
Key words: cobalt catalysis; alkenes; isomerization; regioselectivity; stereoselectivity
| [1] | Wang, E.-J. Stereoselective Alkene Synthesis, Springer-Verlag, 2012. |
| [2] | Takeda, T.; Tsubouchi, A. Org. React. 2013, 82, 1. |
| [3] | Holland, P. L. Acc. Chem. Res. 2015, 48, 1696. |
| [4] | Hilt, G. ChemCatChem 2014, 6, 2484. |
| [5] | Yu, X.; Zhao, H.; Li, P.; Koh, M. J. J. Am. Chem. Soc. 2020, 142, 18223. |
| [6] | Kapat, A.; Sperger, T.; Guven, S.; Schoenebeck, F. Science 2019, 363, 391. |
| [7] | Garhwal, S.; Kaushansky, A.; Fridman, N.; De Ruiter, G. Chem Catal. 2021, 1, 631. |
| [8] | (a) Ge, Q.; Meng, J.; Liu, H.; Yang, Z.; Wu, Z.; Zhang, W. Chin. J. Chem. 2022, 40, 2269. |
| [8] | (b) Ren, W.; Sun, F.; Chu, J.; Shi, Y. Org. Lett. 2020, 22, 1868. |
| [8] | (c) Thiery, E.; Chevrin, C.; Le Bras, J.; Harakat, D.; Muzart, J. J. Org. Chem. 2007, 72, 1859. |
| [8] | (d) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998. |
| [8] | (e) Chen, C.; Hou, C.; Chen, P.; Liu, G. Chin. J. Chem. 2020, 38, 346. |
| [9] | (a) Wang, Y.; Qin, C.; Jia, X.; Leng, X.; Huang, Z. Angew. Chem. Int. Ed. 2017, 56, 1614. |
| [9] | (b) Camp, A. M.; Kita, M. R.; Blackburn, P. T.; Dodge, H. M.; Chen, C.-H.; Miller, A. J. M. J. Am. Chem. Soc. 2021, 143, 2792. |
| [10] | (a) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357. |
| [10] | (b) Larsen, C. R.; Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2014, 136, 1226. |
| [10] | (c) Donohoe, T. J.; O'riordan, T. J. C.; Rosa, C. P. Angew. Chem. Int. Ed. 2009, 48, 1014. |
| [10] | (d) Trost, B. M.; Cregg, J. J.; Quach, N. J. Am. Chem. Soc. 2017, 139, 5133. |
| [10] | (e) Lai, Y.; Dai, W.-M. Chin. J. Chem. 2021, 39, 69. |
| [10] | (f) Zhao, L.; Wang, X.; Qiang, Q.; Zhao, X.; Liu, F.; Lu, S.; Rong, Z.-Q. Chin. J. Chem. 2024, 42, 1828. |
| [11] | (a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 9870. |
| [11] | (b) Martínez, J. I.; Smith, J. J.; Hepburn, H. B.; Lam, H. W. Angew. Chem. Int. Ed. 2016, 55, 1108. |
| [11] | (c) Qin, A.; Zhang, Q.; Qian, H.; Han, Y.; Ma, S. Chin. J. Chem. 2021, 39, 559. |
| [12] | (a) Liu, X.; Li, B.; Liu, Q. Synthesis 2019, 51, 1293. |
| [12] | (b) Xu, S.; Liu, G.; Huang, Z. Chin. J. Chem. 2021, 39, 585. |
| [12] | (c) Zhang, M.; Ji, Y.; Zhang, C. Chin. J. Chem. 2022, 40, 1608. |
| [12] | (d) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443. |
| [12] | (e) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075. |
| [12] | (f) Li, Y.; Lu, X.; Fu, Y. CCS Chem. 2024, 6, 1130. |
| [12] | (g) Wu, L.; We, H.-L.; Shen, J.-F.; Chen, J.-Z.; Zhang, W.-B. Acta Chim. Sinica 2021, 79, 1331 (in Chinese). |
| [12] | (吴良, 魏瀚林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.) |
| [13] | (a) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788. |
| [13] | (b) Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.; Palmer, J. H. J. Am. Chem. Soc. 2016, 138, 7698. |
| [13] | (c) Liu, X.; Zhang, W.; Wang, Y.; Zhang, Z. X.; Jiao, L.; Liu, Q. J. Am. Chem. Soc. 2018, 140, 6873. |
| [13] | (d) Zhang, S.; Bedi, D.; Cheng, L.; Unruh, D. K.; Li, G.; Findlater, M. J. Am. Chem. Soc. 2020, 142, 8910. |
| [13] | (e) Zhao, J.; Cheng, B.; Chen, C.; Lu, Z. Org. Lett. 2020, 22, 837. |
| [13] | (f) Liu, H.; Cai, C.; Ding, Y.; Chen, J.; Liu, B.; Xia, Y. ACS Omega 2020, 5, 11655. |
| [14] | (a) Pünner, F.; Schmidt, A.; Hilt, G. Angew. Chem. Int. Ed. 2012, 51, 1270. |
| [14] | (b) Schmidt, A.; N?dling, A. R.; Hilt, G. Angew. Chem. Int. Ed. 2015, 54, 801. |
| [14] | (c) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J. Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945. |
| [14] | (d) Kim, D.; Pillon, G.; Diprimio, D. J.; Holland, P. L. J. Am. Chem. Soc. 2021, 143, 3070. |
| [15] | Kobayashi, T.; Yorimitsu, H.; Oshima, K. Chem. Asian. J. 2009, 4, 1078. |
| [16] | Meng, Q.-Y.; Schirmer, T. E.; Katou, K.; K?nig, B. Angew. Chem. Int. Ed. 2019, 58, 5723. |
| [17] | Liu, J.; Du, J.; Yu, F.; Gan, L.; Liu, G.; Huang, Z. ACS Catal. 2023, 13, 7995. |
| [18] | Molloy, J. J.; Morack, T.; Gilmour, R. Angew. Chem. Int. Ed. 2019, 58, 13654. |
| [19] | Massad, I.; Marek, I. ACS Catal. 2020, 10, 5793. |
| [20] | Biswas, S.; Huang, Z.; Choliy, Y.; Wang, D. Y.; Brookhart, M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2012, 134, 13276. |
| [21] | Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300. |
| [22] | Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962. |
| [23] | Rubel, C. Z.; Ravn, A. K.; Ho, H. C.; Yang, S.; Li, Z.-Q.; Engle, K. M.; Vantourout, J. C. Angew. Chem. Int. Ed. 2024, e202320081. |
| [24] | (a) Li, X.-R.; Zhang, R.-J.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J. Org. Chem. Front. 2024, 11, 646. |
| [24] | (b) Zhang, R.-J.; Li, X.-R.; Liang, R.-B.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J.; Wu, L.-Z. Org. Lett. 2024, 26, 591. |
| [25] | Kawamura, K. E.; Chang, A. S.-M.; Martin, D. J.; Smith, H. M.; Morris, P. T.; Cook, A. K. Organometallics 2022, 41, 486. |
| [26] | Liu, H.; Xu, M.; Cai, C.; Chen, J.; Gu, Y.; Xia, Y. Org. Lett. 2020, 22, 1193. |
| [27] | Movassaghi, M.; Ahmad, O. K. Angew. Chem. Int. Ed. 2008, 47, 8909. |
/
| 〈 |
|
〉 |