乙烯基重氮化合物非金属卡宾机制参与的反应
收稿日期: 2024-03-02
修回日期: 2024-05-05
网络出版日期: 2024-05-11
基金资助
国家自然科学基金(21572183)
Non-Metallic Carbene Pathway Transformations of Vinyl Diazo Compounds
Received date: 2024-03-02
Revised date: 2024-05-05
Online published: 2024-05-11
Supported by
National Natural Science Foundation of China(21572183)
蒋镓西 , 刘全忠 . 乙烯基重氮化合物非金属卡宾机制参与的反应[J]. 有机化学, 2024 , 44(9) : 2640 -2657 . DOI: 10.6023/cjoc202401018
Vinyl diazo compounds are important compounds in organic synthesis. The generated vinyl metallic carbene species undergo insertion reactions, cycloaddition, and other reactions. As a class of weak nucleophiles, the reaction of vinyl diazo compounds with electron-deficient systems or free radicals not via metallic carbene intermediates has attracted attention from chemical societies in recent years. Carbene chemistry has been well investigated and reviewed. While the reactions of vinyl diazo compounds involved in the non-metallic carbene route are relatively scattered. Non-metallic carbene pathway transformations over the past two decades of vinyl diazo compounds are reviewed. Furthermore, the prospect in this field is also discussed.
| [1] | (a) Michael, P. D.; Doyle, M. P. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Hoboken, Newjersy, U. S. A., Wiley, 1998. |
| [1] | (b) Suleman, M.; Lu, P.; Wang, Y. Org. Chem. Front. 2021, 8, 2059. |
| [1] | (c) Akter, M.; Rupa, K.; Anbarasan, P. Chem. Rev. 2022, 122, 13108. |
| [1] | (d) Ciszewski, ?. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432. |
| [1] | (e) Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Chem. Soc. Rev. 2020, 49, 908. |
| [1] | (f) Candeias, N. R.; Paterna, R.; Gois, P. M. P. Chem. Rev. 2016, 116, 293. |
| [1] | (g) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981. |
| [1] | (h) Qiu, D.; Wang, J. In Recent Developments of Diazo Compounds in Organic Synthesis, World Scientific (Europe), Singapore, 2020. |
| [1] | (i) Tian, M.; Yang, L.; Liu, B.; Chang, J. Chin. J. Chem. 2023, 41, 1327. |
| [2] | (a) Zhang, Y.; Zhou, G.; Gong, X.; Guo, Z.; Qi, X.; Shen, X. Angew. Chem., Int. Ed. 2022, 61, e202202175. |
| [2] | (b) Roy, A.; Goswami, S. P.; Sarker, A. Synth. Commun. 2018, 48, 2003. |
| [2] | (c) Wu, W.; Lin, Z.; Jiang, H. Org. Biomol. Chem., 2018, 16, 7315. |
| [2] | (d) Dong, K.; Liu, M.; Xu, X. Molecules 2022, 27, 3088. |
| [2] | (e) Hao, T.; Shi, M.; Wei, Y. Chin. J. Chem. 2023, 41, 301. |
| [3] | (a) Che, J.; Niu, L.; Xiong, D.; Hu, W. Nat. Commun. 2020, 11, 1511. |
| [3] | (b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427. |
| [3] | (c) Zhang, D.; Hu, W. Chem. Rec. 2017, 17, 739. |
| [3] | (d) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810. |
| [3] | (e) Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zhan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem. 2012, 4, 733. |
| [3] | (f) Zhou, C.-Y.; Wang, J.-C.; Wei, J.; Xu, Z.-J.; Guo, Z.; Low, K.-H.; Che, C.-M. Angew. Chem., Int. Ed. 2012, 51, 11376. |
| [3] | (g) Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098. |
| [3] | (h) Nicolle, S. M.; Lewis, W.; Hayes, C. J.; Moody, C. J. Angew. Chem., Int. Ed. 2016, 55, 3749. |
| [3] | (i) Yuan, W.; Eriksson, L.; Szab?, K. J. Angew. Chem., Int. Ed. 2016, 55, 8410. |
| [4] | (a) Tang, F.; Pu, M. J. Am. Chem. Soc. 2021, 143, 2394. |
| [4] | (b) Tan, F.; Liu, X.; Wang, Y.; Dong, S.; Yu, H.; Feng, X. Angew. Chem., Int. Ed. 2018, 57, 16176. |
| [4] | (c) Xia, A.-J.; Kang, T.-R.; He, L.; Chen, L.-M.; Li, W.-T.; Yang, J.-L.; Liu, Q.-Z. Angew. Chem., Int. Ed. 2016, 55, 1441. |
| [4] | (d) Li, S.-S.; Sun, S.; Wang, J.-B. Angew. Chem., Int. Ed. 2021, 61, e202115098. |
| [4] | (e) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 8532. |
| [4] | (f) Gao, L.; Kang, B. C.; Hwang, G.-S.; Ryu, D. H. Angew. Chem., Int. Ed. 2012, 51, 8322. |
| [4] | (g) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2011, 133, 8834. |
| [5] | (a) Chen, Y.; Yu, R.; Wang, M.; Huang, Y.; Peng, Y. Adv. Synth. Catal. 2021, 363, 4856. |
| [5] | (b) Du, F.; Yin, L.; Ning, Y.; Peng, Y. Adv. Synth. Catal. 2016, 358, 2280. |
| [5] | (c) B. M. Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2012, 134, 2075. |
| [5] | (d) Trost, B. M.; Malhotra, S.; Fred, B. A. J. Am. Chem. Soc. 2009, 131, 1674. |
| [5] | (e) Wang, F.; Liu, X.; Zhang, Y.; Lin, L.; Feng, X. Chem. Commun. 2009, 7297. |
| [5] | (f) Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2011, 134, 2075. |
| [5] | (g) Trost, B. M.; Malhotra, S.; Ellerbrock, P. Org. Lett. 2013, 15, 440. |
| [6] | (a) Davies, H. M. L.; Saikali, E.; Clark, T. J.; Chee, E. H. Tetrahedron Lett. 1990, 31, 6299. |
| [6] | (b) Davies, H. M. L.; Clark, T. J.; Smith, H. D. J. Org. Chem. 1991, 56, 3817. |
| [7] | Davies, H. M. L.; Hougland, P. W.; Cantrell, W. R. Synth. Commmun. 1992, 22, 971. |
| [8] | (a) Cheng, Q.-Q.; Yu, Y.; Yedoyan, J.; Doyle, M. P. ChemCatChem 2018, 10, 488. |
| [8] | (b) López, E.; González-Pelayo, S.; López, L. A. Chem. Rec. 2017, 17, 312. |
| [8] | (c) Marichev, K. O.; Zheng, H.; Doyle, M. P. In Transition Metal Catalysed Carbene Transformations, Wiley‐VCH GmbH, Weinheim Germany, 2022, Chapter 5, pp. 139-168, https://doi.org/10.1002/9783527829170. |
| [8] | (d) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425. |
| [8] | (e) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396. |
| [8] | (f) Bao, M.; Zhou, S.; Xu, X. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, John Wiley & Sons, New York, U. S. A., 2022, https://doi.org/10.1002/9781119757153. |
| [9] | Zheng, H.; Dong, K.; Wherritt, D.; Arman, H.; Doyle, M. P. Angew. Chem., Int. Ed. 2020, 59, 13613. |
| [10] | Barluenga, J.; Lonzi, G.; Riesgo, L.; Tomás, M.; López, L. A. J. Am. Chem. Soc. 2011, 133, 18138. |
| [11] | Angelis, L. A.; Zheng, H.; Perz, M. T.; Arman, H.; Doyle, M. P. Org. Lett. 2021, 23, 6542. |
| [12] | Barluenga, J.; Riesgo, L.; López, L. A.; Rubio, E.; Tomás, M. Angew. Chem., Int. Ed. 2009, 48, 7569. |
| [13] | Xu, Y.; Wang, Z.; Sun, J. Org. Lett. 2021, 23, 7613. |
| [14] | Barluenga, J.; Riesgo, L.; Lonzi, G.; Tomás, M.; López, L. A. Chem.-Eur. J. 2012, 18, 9221. |
| [15] | Mata, S.; González, M. J.; López, L. A.; Vicente, R. Chem.-Eur. J. 2017, 23, 1013. |
| [16] | Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 5171. |
| [17] | Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711. |
| [18] | Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809. |
| [19] | Pagar, V. V.; Liu, R.-S. Org. Biomol. Chem. 2015, 13, 6166. |
| [20] | Deng, G.; Tian, X.; Qu, Z.; Wang, J. Angew. Chem., Int. Ed. 2002, 41, 2773. |
| [21] | Bel, M. D.; Rovira, A.; Guerrero, C. A. J. Am. Chen. Soc. 2013, 135, 12188. |
| [22] | Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605. |
| [23] | Zheng, H.; Wang, K.; Faghihi, S.; Griffith, W. P.; Arman, H.; Doyle, M. P. ACS Catal. 2021, 11, 9869. |
| [24] | Pagar, V. V.; Liu, R. S. Angew. Chem., Int. Ed. 2015, 54, 4923. |
| [25] | Stefkova, K.; Guerzoni, M. G.; van Ingen, Y.; Richard, E.; Melen, R. L. Org. Lett. 2023, 25, 500. |
| [26] | Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 10980. |
| [27] | Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517. |
| [28] | Zheng, H.; Wang, K.; Angelis, L. D.; Arman, H. D.; Doyle, M. P. J. Am. Chem. Soc. 2021, 143, 15391. |
| [29] | Raj, A. S. K.; Narode, A. S.; Liu, R.-S. Org. Lett. 2021, 23, 1378. |
| [30] | Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229. |
| [31] | Jiang, Q.; Yang, T.; Li, Q.; Liang, G.-M.; Liu, Y.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 3184. |
| [32] | Yang, T.; Jiang, Q.; Wang, C.-M.; Li, S.-L.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 2243. |
| [33] | Li, W.; Zhou, X.; Xiao, T.; Ke, Z.; Zhou, L. CCS Chem. 2022, 4, 638. |
| [34] | Li, W.; Zhou, L. Green. Chem. 2021, 23, 6652. |
| [35] | Sarabia, F. J.; Li, Q.; Ferreira, E. M. Angew. Chem., Int. Ed. 2018, 57, 11015. |
| [36] | Cho, Y. H.; Kim, J. H.; An, H.; Ahn, K.-H.; Kang, E. J. Adv. Synth. Catal. 2020, 362. 2183. |
| [37] | Li, W.; Zhou, L. Org. Lett. 2021, 23, 4279. |
| [38] | Li, S.; Zhou, L. Org. Lett. 2023, 25, 8700. |
| [39] | Gall, B. K.; Smith, A. K.; Ferreira, E. M. Angew. Chem., Int. Ed. 2022, 61, e202212187. |
| [40] | Li, W.; Li, S.; Empel, C.; Koenigs, R. M.; Zhou, L. Angew. Chem., Int. Ed. 2023, 62, e202309947. |
| [41] | Dasgupta, A.; Bhattacharjee, S.; Tong, Z.; Guin, A.; McNamee, R. E.; Christensen, K. E.; Biju, A. T.; Anderson, E. A. J. Am. Chem. Soc. 2024, 146, 1196. |
| [42] | Xie, Y.; Zhang, R.; Chen, Z.-L.; Rong, M.; He, R.; Ni, S.; He, X.-K.; Xiao, W.-J.; Xuan, J. Adv. Sci. 2024, 11, 2306728. |
/
| 〈 |
|
〉 |