综述与进展

乙烯基重氮化合物非金属卡宾机制参与的反应

  • 蒋镓西 ,
  • 刘全忠
展开
  • 西华师范大学化学化工学院 化学合成与污染控制四川省重点实验室 四川南充 637002

收稿日期: 2024-03-02

  修回日期: 2024-05-05

  网络出版日期: 2024-05-11

基金资助

国家自然科学基金(21572183)

Non-Metallic Carbene Pathway Transformations of Vinyl Diazo Compounds

  • Jia-Xi Jiang ,
  • Quan-Zhong Liu
Expand
  • Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002

Received date: 2024-03-02

  Revised date: 2024-05-05

  Online published: 2024-05-11

Supported by

National Natural Science Foundation of China(21572183)

摘要

乙烯基重氮化合物是一类重要的重氮化合物. 作为重氮化合物, 乙烯基重氮化合物生成的金属卡宾物种能发生插入反应、环加成等反应; 作为一类较弱的亲核试剂, 乙烯基重氮化合物不经过金属卡宾中间体与贫电子体系或自由基发生的反应最近几年受到关注. 乙烯基重氮化合物经过金属卡宾中间体的反应研究较为系统, 这方面的综述较多, 而乙烯基重氮化合物非金属卡宾路线参与的反应相对较为分散, 迄今还没有系统的讨论. 对乙烯基重氮化合物非金属卡宾机制参与的反应进行了综述, 并对该领域的发展方向进行了展望.

本文引用格式

蒋镓西 , 刘全忠 . 乙烯基重氮化合物非金属卡宾机制参与的反应[J]. 有机化学, 2024 , 44(9) : 2640 -2657 . DOI: 10.6023/cjoc202401018

Abstract

Vinyl diazo compounds are important compounds in organic synthesis. The generated vinyl metallic carbene species undergo insertion reactions, cycloaddition, and other reactions. As a class of weak nucleophiles, the reaction of vinyl diazo compounds with electron-deficient systems or free radicals not via metallic carbene intermediates has attracted attention from chemical societies in recent years. Carbene chemistry has been well investigated and reviewed. While the reactions of vinyl diazo compounds involved in the non-metallic carbene route are relatively scattered. Non-metallic carbene pathway transformations over the past two decades of vinyl diazo compounds are reviewed. Furthermore, the prospect in this field is also discussed.

参考文献

[1]
(a) Michael, P. D.; Doyle, M. P. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Hoboken, Newjersy, U. S. A., Wiley, 1998.
[1]
(b) Suleman, M.; Lu, P.; Wang, Y. Org. Chem. Front. 2021, 8, 2059.
[1]
(c) Akter, M.; Rupa, K.; Anbarasan, P. Chem. Rev. 2022, 122, 13108.
[1]
(d) Ciszewski, ?. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[1]
(e) Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Chem. Soc. Rev. 2020, 49, 908.
[1]
(f) Candeias, N. R.; Paterna, R.; Gois, P. M. P. Chem. Rev. 2016, 116, 293.
[1]
(g) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[1]
(h) Qiu, D.; Wang, J. In Recent Developments of Diazo Compounds in Organic Synthesis, World Scientific (Europe), Singapore, 2020.
[1]
(i) Tian, M.; Yang, L.; Liu, B.; Chang, J. Chin. J. Chem. 2023, 41, 1327.
[2]
(a) Zhang, Y.; Zhou, G.; Gong, X.; Guo, Z.; Qi, X.; Shen, X. Angew. Chem., Int. Ed. 2022, 61, e202202175.
[2]
(b) Roy, A.; Goswami, S. P.; Sarker, A. Synth. Commun. 2018, 48, 2003.
[2]
(c) Wu, W.; Lin, Z.; Jiang, H. Org. Biomol. Chem., 2018, 16, 7315.
[2]
(d) Dong, K.; Liu, M.; Xu, X. Molecules 2022, 27, 3088.
[2]
(e) Hao, T.; Shi, M.; Wei, Y. Chin. J. Chem. 2023, 41, 301.
[3]
(a) Che, J.; Niu, L.; Xiong, D.; Hu, W. Nat. Commun. 2020, 11, 1511.
[3]
(b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427.
[3]
(c) Zhang, D.; Hu, W. Chem. Rec. 2017, 17, 739.
[3]
(d) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
[3]
(e) Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zhan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem. 2012, 4, 733.
[3]
(f) Zhou, C.-Y.; Wang, J.-C.; Wei, J.; Xu, Z.-J.; Guo, Z.; Low, K.-H.; Che, C.-M. Angew. Chem., Int. Ed. 2012, 51, 11376.
[3]
(g) Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098.
[3]
(h) Nicolle, S. M.; Lewis, W.; Hayes, C. J.; Moody, C. J. Angew. Chem., Int. Ed. 2016, 55, 3749.
[3]
(i) Yuan, W.; Eriksson, L.; Szab?, K. J. Angew. Chem., Int. Ed. 2016, 55, 8410.
[4]
(a) Tang, F.; Pu, M. J. Am. Chem. Soc. 2021, 143, 2394.
[4]
(b) Tan, F.; Liu, X.; Wang, Y.; Dong, S.; Yu, H.; Feng, X. Angew. Chem., Int. Ed. 2018, 57, 16176.
[4]
(c) Xia, A.-J.; Kang, T.-R.; He, L.; Chen, L.-M.; Li, W.-T.; Yang, J.-L.; Liu, Q.-Z. Angew. Chem., Int. Ed. 2016, 55, 1441.
[4]
(d) Li, S.-S.; Sun, S.; Wang, J.-B. Angew. Chem., Int. Ed. 2021, 61, e202115098.
[4]
(e) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 8532.
[4]
(f) Gao, L.; Kang, B. C.; Hwang, G.-S.; Ryu, D. H. Angew. Chem., Int. Ed. 2012, 51, 8322.
[4]
(g) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2011, 133, 8834.
[5]
(a) Chen, Y.; Yu, R.; Wang, M.; Huang, Y.; Peng, Y. Adv. Synth. Catal. 2021, 363, 4856.
[5]
(b) Du, F.; Yin, L.; Ning, Y.; Peng, Y. Adv. Synth. Catal. 2016, 358, 2280.
[5]
(c) B. M. Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2012, 134, 2075.
[5]
(d) Trost, B. M.; Malhotra, S.; Fred, B. A. J. Am. Chem. Soc. 2009, 131, 1674.
[5]
(e) Wang, F.; Liu, X.; Zhang, Y.; Lin, L.; Feng, X. Chem. Commun. 2009, 7297.
[5]
(f) Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2011, 134, 2075.
[5]
(g) Trost, B. M.; Malhotra, S.; Ellerbrock, P. Org. Lett. 2013, 15, 440.
[6]
(a) Davies, H. M. L.; Saikali, E.; Clark, T. J.; Chee, E. H. Tetrahedron Lett. 1990, 31, 6299.
[6]
(b) Davies, H. M. L.; Clark, T. J.; Smith, H. D. J. Org. Chem. 1991, 56, 3817.
[7]
Davies, H. M. L.; Hougland, P. W.; Cantrell, W. R. Synth. Commmun. 1992, 22, 971.
[8]
(a) Cheng, Q.-Q.; Yu, Y.; Yedoyan, J.; Doyle, M. P. ChemCatChem 2018, 10, 488.
[8]
(b) López, E.; González-Pelayo, S.; López, L. A. Chem. Rec. 2017, 17, 312.
[8]
(c) Marichev, K. O.; Zheng, H.; Doyle, M. P. In Transition Metal Catalysed Carbene Transformations, Wiley‐VCH GmbH, Weinheim Germany, 2022, Chapter 5, pp. 139-168, https://doi.org/10.1002/9783527829170.
[8]
(d) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425.
[8]
(e) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396.
[8]
(f) Bao, M.; Zhou, S.; Xu, X. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, John Wiley & Sons, New York, U. S. A., 2022, https://doi.org/10.1002/9781119757153.
[9]
Zheng, H.; Dong, K.; Wherritt, D.; Arman, H.; Doyle, M. P. Angew. Chem., Int. Ed. 2020, 59, 13613.
[10]
Barluenga, J.; Lonzi, G.; Riesgo, L.; Tomás, M.; López, L. A. J. Am. Chem. Soc. 2011, 133, 18138.
[11]
Angelis, L. A.; Zheng, H.; Perz, M. T.; Arman, H.; Doyle, M. P. Org. Lett. 2021, 23, 6542.
[12]
Barluenga, J.; Riesgo, L.; López, L. A.; Rubio, E.; Tomás, M. Angew. Chem., Int. Ed. 2009, 48, 7569.
[13]
Xu, Y.; Wang, Z.; Sun, J. Org. Lett. 2021, 23, 7613.
[14]
Barluenga, J.; Riesgo, L.; Lonzi, G.; Tomás, M.; López, L. A. Chem.-Eur. J. 2012, 18, 9221.
[15]
Mata, S.; González, M. J.; López, L. A.; Vicente, R. Chem.-Eur. J. 2017, 23, 1013.
[16]
Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 5171.
[17]
Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711.
[18]
Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809.
[19]
Pagar, V. V.; Liu, R.-S. Org. Biomol. Chem. 2015, 13, 6166.
[20]
Deng, G.; Tian, X.; Qu, Z.; Wang, J. Angew. Chem., Int. Ed. 2002, 41, 2773.
[21]
Bel, M. D.; Rovira, A.; Guerrero, C. A. J. Am. Chen. Soc. 2013, 135, 12188.
[22]
Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605.
[23]
Zheng, H.; Wang, K.; Faghihi, S.; Griffith, W. P.; Arman, H.; Doyle, M. P. ACS Catal. 2021, 11, 9869.
[24]
Pagar, V. V.; Liu, R. S. Angew. Chem., Int. Ed. 2015, 54, 4923.
[25]
Stefkova, K.; Guerzoni, M. G.; van Ingen, Y.; Richard, E.; Melen, R. L. Org. Lett. 2023, 25, 500.
[26]
Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 10980.
[27]
Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517.
[28]
Zheng, H.; Wang, K.; Angelis, L. D.; Arman, H. D.; Doyle, M. P. J. Am. Chem. Soc. 2021, 143, 15391.
[29]
Raj, A. S. K.; Narode, A. S.; Liu, R.-S. Org. Lett. 2021, 23, 1378.
[30]
Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229.
[31]
Jiang, Q.; Yang, T.; Li, Q.; Liang, G.-M.; Liu, Y.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 3184.
[32]
Yang, T.; Jiang, Q.; Wang, C.-M.; Li, S.-L.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 2243.
[33]
Li, W.; Zhou, X.; Xiao, T.; Ke, Z.; Zhou, L. CCS Chem. 2022, 4, 638.
[34]
Li, W.; Zhou, L. Green. Chem. 2021, 23, 6652.
[35]
Sarabia, F. J.; Li, Q.; Ferreira, E. M. Angew. Chem., Int. Ed. 2018, 57, 11015.
[36]
Cho, Y. H.; Kim, J. H.; An, H.; Ahn, K.-H.; Kang, E. J. Adv. Synth. Catal. 2020, 362. 2183.
[37]
Li, W.; Zhou, L. Org. Lett. 2021, 23, 4279.
[38]
Li, S.; Zhou, L. Org. Lett. 2023, 25, 8700.
[39]
Gall, B. K.; Smith, A. K.; Ferreira, E. M. Angew. Chem., Int. Ed. 2022, 61, e202212187.
[40]
Li, W.; Li, S.; Empel, C.; Koenigs, R. M.; Zhou, L. Angew. Chem., Int. Ed. 2023, 62, e202309947.
[41]
Dasgupta, A.; Bhattacharjee, S.; Tong, Z.; Guin, A.; McNamee, R. E.; Christensen, K. E.; Biju, A. T.; Anderson, E. A. J. Am. Chem. Soc. 2024, 146, 1196.
[42]
Xie, Y.; Zhang, R.; Chen, Z.-L.; Rong, M.; He, R.; Ni, S.; He, X.-K.; Xiao, W.-J.; Xuan, J. Adv. Sci. 2024, 11, 2306728.
文章导航

/