共晶提升纯有机材料室温磷光余辉性能
收稿日期: 2024-03-23
修回日期: 2024-04-24
网络出版日期: 2024-05-11
基金资助
国家自然科学基金(52073172); 国家自然科学基金(U22A20250)
Cocrystallization Boosted Performance of Room Temperature Phosphorescence Afterglows from Pure Organics
Received date: 2024-03-23
Revised date: 2024-04-24
Online published: 2024-05-11
Supported by
National Natural Science Foundation of China(52073172); National Natural Science Foundation of China(U22A20250)
纯有机超长寿命室温磷光(p-RTP)材料因其独特的光物理性质, 低成本, 结构可设计性及其在生物影像、疾病诊疗、传感与防伪加密等领域的应用前景引起了广泛关注. 然而, 要实现兼具高效且颜色可调的p-RTP余辉发射, 仍颇具挑战. 受簇聚诱导发光(CTE)机理启发, 选用三聚氰胺(MA)和环酰脲化合物海因(HA)及二氢尿嘧啶(DHU)作为电子给体和受体, 采用共晶策略制备了1∶1计量组成的共晶. 较MA、HA及DHU单组分晶体而言, 共晶展现出更好的p-RTP颜色可调性及更长寿命, 这是共晶中广泛存在C=O、孤对电子、多重氢键、适当电荷转移及多重簇发光中心等协同作用的结果, 并进一步展示了这些共晶材料在高端防伪保密领域的应用.
崔怡静 , 朱天文 , 张强 , 袁望章 . 共晶提升纯有机材料室温磷光余辉性能[J]. 有机化学, 2024 , 44(8) : 2588 -2594 . DOI: 10.6023/cjoc202401023
Pure organic materials with persistent room-temperature phosphorescent (p-RTP) have attracted extensive attention due to their unique photophysical properties, low cost, design flexibility, and promising applications in such areas as biomedical imaging, disease diagnosis and treatment, sensing, and anti-counterfeiting encryption. Achieving efficient, long-lived, and tunable p-RTP afterglows, however, remains a significant challenge. Herein, inspired by the clustering- triggered emission (CTE) mechanism, utilizing the cocrystallization strategy, cocrystals with stoichiometric ratio of 1∶1 were prepared by employing melamine (MA) and cyclic acylureas of hydantoin (HA) and dihydrouracil (DHU) as electron donor and acceptors, respectively. Compared to the single-component crystals of MA, HA, and DHU, the cocrystals exhibited better color-tunability and longer lifetimes for p-RTP emissions, which are attributable to the synergistic effects of the widespread presence of C=O groups, lone pair electrons, multiple hydrogen bonds, appropriate charge transfer, and multiple emissive clusters. Furthermore, advanced anti-counterfeiting and encryption applications of these cocrystalss were demonstrated.
| [1] | Zhao, W.; He, Z.; Tang, B. Z. Nat. Rev. Mater. 2020, 5, 869. |
| [2] | Du, H.; Zhao, W.; Xia, Y.; Xie, S.; Tao, Y.; Gao, Y. Q.; Zhang, J.; Wan, X. Aggregat. 2023, 4, e276. |
| [3] | Peng, Q.; Ma, H.; Shuai, Z. Acc. Chem. Res. 2021, 54, 940. |
| [4] | Yan, Z.-A.; Lin, X.; Sun, S.; Ma, X.; Tian, H. Angew. Chem., Int. Ed. 2021, 60, 19735. |
| [5] | Gan, N.; Zou, X.; Zhang, Y.; Gu, L.; An, Z. Appl. Phys. Rev. 2023, 10, 021313. |
| [6] | Wang, Z.; Li, A.; Zhao, Z.; Zhu, T.; Zhang, Q.; Zhang, Y.; Tan, Y.; Yuan, W. Z. Adv. Mater. 2022, 34, 2202182. |
| [7] | Dou, X.; Zhu, T.; Wang, Z.; Sun, W.; Lai, Y.; Sui, K.; Tan, Y.; Zhang, Y.; Yuan, W. Z. Adv. Mater. 2020, 32, 2004768. |
| [8] | Xiao, F.; Gao, H.; Lei, Y.; Dai, W.; Liu, M.; Zheng, X.; Cai, Z.; Huang, X.; Wu, H.; Ding, D. Nat. Commun. 2022, 13, 186. |
| [9] | Fateminia, S. M. A.; Mao, Z.; Xu, S.; Yang, Z.; Chi, Z.; Liu, B. Angew. Chem., Int. Ed. 2017, 56, 12160. |
| [10] | Gu, L.; Shi, H.; Bian, L.; Gu, M.; Ling, K.; Wang, X.; Ma, H.; Cai, S.; Ning, W.; Fu, L.; Wang, H.; Wang, S.; Gao, Y.; Yao, W.; Huo, F.; Tao, Y.; An, Z.; Liu, X.; Huang, W. Nat. Photonic. 2019, 13, 406. |
| [11] | Zhou, Q.; Yang, T.; Zhong, Z.; Kausar, F.; Wang, Z.; Zhang, Y.; Yuan, W. Z. Chem. Sci. 2020, 11, 2926. |
| [12] | Li, H.; Gu, J.; Wang, Z.; Wang, J.; He, F.; Li, P.; Tao, Y.; Li, H.; Xie, G.; Huang, W.; Zheng, C.; Chen, R. Nat. Commun. 2022, 13, 429. |
| [13] | Lai, Y.; Zhao, Z.; Zheng, S.; Yuan, W. Z. Acta Chim. Sinic. 2021, 79, 93 (in Chinese). |
| [13] | (来悦颖, 赵子豪, 郑书源, 袁望章, 化学学报, 2021, 79, 93.) |
| [14] | Huang, A.; Fan, Y.; Wang, K.; Wang, Z.; Wang, X.; Chang, K.; Gao, Y.; Chen, M.; Li, Q.; Li, Z. Adv. Mater. 2023, 35, 2209166. |
| [15] | Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence: Principles and Applications, 2nd ed., John Wiley & Sons, New Yor., 2012, pp. 33-39. |
| [16] | Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W. Z. Chem. Soc. Rev. 2021, 50, 12616. |
| [17] | Singh, M.; Liu, K.; Qu, S.; Ma, H.; Shi, H.; An, Z.; Huang, W. Adv. Opt. Mater. 2021, 9, 2002197. |
| [18] | Zhou, B.; Yan, D. Adv. Funct. Mater. 2019, 29, 1807599. |
| [19] | Yang, T.; Li, Y.; Zhao, Z.; Yuan, W. Z. Sci. China: Chem. 2023, 66, 367. |
| [20] | Zheng, S.; Zhu, T.; Wang, Y.; Yang, T.; Yuan, W. Z. Angew. Chem., Int. Ed. 2020, 59, 10018. |
| [21] | Wang, Y.; Tang, S.; Wen, Y.; Zheng, S.; Yang, B.; Yuan, W. Z. Mater. Horiz. 2020, 7, 2105. |
| [22] | Bian, L.; Ma, H.; Ye, W.; Lv, A.; Wang, H.; Jia, W.; Gu, L.; Shi, H.; An, Z.; Huang, W. Sci. China: Chem. 2020, 63, 1443. |
| [23] | Shi, C.-Y.; He, D.-D.; Wang, B.-S.; Zhang, Q.; Tian, H.; Qu, D.-H. Angew. Chem., Int. Ed. 2023, 62, e202214422. |
| [24] | Xu, L.; Zhang, S.; Zhong, S.; Gao, Y.; Cui, X. Colloids Surf.,A 2022, 632, 127788 |
| [25] | Deng, J.; Bai, Y.; Li, J.; Jiang, J.; Zhao, C.; Xie, W.; Guo, Y.; Liu, H.; Liu, D.; Yu, L.; Wang, H. Adv. Optical Mater. 2023, 11, 2300715. |
| [26] | He, Y.; Feng, W.; Qiao, Y.; Tian, Z.; Tang, B. Z.; Yan, H. Angew. Chem., Int. Ed. 2023, 62, e202312571. |
| [27] | Zhu, T.; Zheng, S.; Yang, T.; Yuan, W. Z. J. Phys. Chem. Lett. 2023, 14, 6451. |
| [28] | Yang, J.; Peng, Q. Chin. J. Chem. Phys. 2022, 35, 38. |
| [29] | Liu, B.; Chu, B.; Zhu, L.; Zhang, H.; Yuan, W.-Z.; Zhao, Z.; Wan, W.-M.; Zhang, X.-H. Chin. Chem. Lett. 2023, 34, 107909. |
| [30] | Deng, J.; Liu, H.; Liu, D.; Yu, L.; Bai, Y.; Xie, W.; Li, T.; Wang, C.; Lian, Y.; Wang, H. Adv. Funct. Mater. 2023, 2308420. |
| [31] | Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2, 2124. |
| [32] | Zhu, T.; Yang, T.; Zhang, Q.; Yuan, W. Z. Nat. Commun. 2022, 13, 2658. |
| [33] | Zhang, H.; Tang, B. Z. JACS A. 2021, 1, 1805. |
/
| 〈 |
|
〉 |