研究论文

硼自由基促进的C—C键形成反应构筑联芳基和苄基羧酸甲酯

  • 李文多 ,
  • 魏娜娜 ,
  • 冯楠
展开
  • a 陇东学院石油化工学院 甘肃省陇东油气资源高效利用重点实验室 甘肃庆阳 745000
    b 陇东学院生命科学与技术学院 甘肃省陇东生物资源保护利用与生态修复重点实验室 甘肃庆阳 745000
    c 陇东学院石油化工学院 甘肃庆阳 745000

收稿日期: 2024-02-22

  修回日期: 2024-03-24

  网络出版日期: 2024-05-11

基金资助

甘肃省自然科学基金(22JR5RM203); 陇东学院博士基金(XYBYZK2221); 陇东学院博士基金(XYBYZK2224); 陇东学院青年科技创新基金(XYZK2303); 甘肃省教育厅创新基金(2024A-164)

Boryl Radical-Promoted Synthesis of Biaryls and Benzylcarboxylic Acids Methyl Ester via C—C Bond Formation Reactions

  • Wenduo Li ,
  • Na'na Wei ,
  • Nan Feng
Expand
  • a Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000
    b Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong, College of Life Science & Technology, Longdong University, Qingyang, Gansu 745000
    c College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000
* E-mail:

Received date: 2024-02-22

  Revised date: 2024-03-24

  Online published: 2024-05-11

Supported by

Natural Science Foundation of Gansu Province(22JR5RM203); Doctor Foundation of Longdong University(XYBYZK2221); Doctor Foundation of Longdong University(XYBYZK2224); Youth Scientific and Technical Innovation Foundation of Longdong University(XYZK2303); Innovation Fund Project of Gansu Education Department(2024A-164)

摘要

发展了有机光氧化还原催化下, 四芳基硼酸酯作为硼基自由基前体构建C—C键的简单方法. 该策略不仅可以用于制备对称和不对称的联芳基化合物, 而且还可以用于苄醇的直接脱氧羧基化. 控制实验和机理研究表明, 芳基硼自由基作为可能的反应活性中间体.

本文引用格式

李文多 , 魏娜娜 , 冯楠 . 硼自由基促进的C—C键形成反应构筑联芳基和苄基羧酸甲酯[J]. 有机化学, 2024 , 44(6) : 1853 -1861 . DOI: 10.6023/cjoc202402012

Abstract

A facile route for the formation of C—C bonds with tetraarylborates as boryl radical precursors under organophotoredox conditions is developed. This strategy has been verified to be applicable not only for the preparation of symmetrical and unsymmetrical biaryls, but also for direct carboxylation of a range of free benzyl alcohols. Control experiments and mechanism studies indicated that aryl boron radical species is a reactive intermediate.

参考文献

[1]
(a) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[1]
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[1]
(c) Campeau, L.-C.; Hazari, N. Organometallics 2019, 38, 3.
[1]
(d) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
[1]
(e) Sestelo, J. P.; Sarandeses, L. A. Molecules 2020, 25, 4500.
[1]
(f) Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; No?l, T. Chem. Rev. 2022, 122, 2752.
[1]
(g) Pitre, S. P.; Overman, L. E. Chem. Rev. 2022, 122, 1717.
[1]
(h) Tabassum, S.; Zahoor, A. F.; Ahmad, S.; Noreen, R.; Khan, S. G.; Ahmad, H. Mol. Diversity 2022, 26, 647.
[1]
(i) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
[2]
(a) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
[2]
(b) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in Chemistry, Biology and Materials, John Wiley & Sons, Chichester, 2012.
[2]
(c) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
[2]
(d) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
[2]
(e) Zard, S. Z. Org. Lett. 2017, 19, 1257.
[2]
(f) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
[2]
(g) Wang, S.; Tang, S.; Lei, A. Sci. Bull. 2018, 63, 1006.
[2]
(h) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
[2]
(i) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[2]
(j) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[2]
(k) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese)
[2]
(陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.)
[3]
(a) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Vols. 1 and 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.
[3]
(b) Dhillon, R. S. Hydroboration and Organic Synthesis, Springer, Germany, 2007.
[4]
(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.-I.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989.
[4]
(b) Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D. J. Org. Chem. 2017, 82, 2898.
[4]
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6, 5366.
[4]
(d) Duan, K.; Yan, X.; Liu, Y.; Li, Z. Adv. Synth. Catal. 2018, 360, 2781.
[4]
(e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin J. Org. Chem. 2020, 40, 3605. (in Chinese)
[4]
(史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
[4]
(f) Crespi, S.; Fagnoni, M. Chem. Rev. 2020, 120, 9790.
[4]
(g) Yu, Y.-J.; Zhang, F.-L.; Peng, T.-Y.; Wang, C.-L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Science 2021, 371, 1232.
[4]
(h) Peng, T.-Y.; Zhang, F.-L.; Wang, Y.-F. Acc. Chem. Res. 2023, 56, 169.
[4]
(i) Jin, J.; Xia, H.; Zhang, F.; Wang, Y.-F. Chin J. Org. Chem, 2020, 40, 2185. (in Chinese)
[4]
(靳继康, 夏慧敏, 张凤莲, 汪义丰, 有机化学, 2020, 40, 2185.)
[5]
(a) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
[5]
(b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[5]
(c) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
[5]
(d) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[5]
(e) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
[6]
(a) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085.
[6]
(b) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Eycken, E. V. V. d.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
[6]
(c) Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
[6]
(d) Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
[6]
(e) Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 9938.
[6]
(f) Shi, D.; Xia, C.; Liu, C. CCS Chem. 2020, 2, 1718.
[7]
(a) Li, G.-X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[7]
(b) Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
[8]
(a) Geske, D. H. J. Phys. Chem. 1959, 63, 1062.
[8]
(b) Geske, D. H. J. Phys. Chem. 1962, 66, 1743.
[9]
(a) Abley, P.; Halpern, J. J. Chem. Soc. D 1971, 20, 1238.
[9]
(b) Mizuno, H.; Sakurai, H.; Amayaa, T.; Hirao, T. Chem. Commun. 2006, 5042.
[9]
(c) Dhital, R. N.; Sakurai, H. Asian J. Org. Chem. 2014, 3, 668.
[9]
(d) Beil, S. B.; M?hle, S.; Endersa, P.; Waldvogel, S. R. Chem. Commun. 2018, 54, 6128.
[9]
(e) Lu, Z.; Lavendomme, R.; Burghaus, O.; Nitschke, J. R. Angew. Chem., Int. Ed. 2019, 58, 9073.
[9]
(f) Music, A.; Baumann, A. N.; Spie?, P.; Plantefol, A.; Jagau, T. C.; Didier, D. J. Am. Chem. Soc. 2020, 142, 4341.
[9]
(g) Baumann, A. N.; Music, A.; Dechent, J.; Müller, N.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2020, 26, 8382.
[9]
(h) Gerleve, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 15468.
[9]
(i) Music, A.; Baumann, A. N.; Boser, F.; Müller, N.; Matz, F.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2021, 27, 4322.
[9]
(j) Matz, F.; Music, A.; Didier, D.; Jagau, T.-C. Electrochem. Sci. Adv. 2022, 2, e2100032.
[9]
(k) Didier, D. Synthesis 2023, 55, 232.
[10]
(a) Li, W.-D.; Wu, Y.; Li, S.-J.; Jiang, Y.-Q.; Li, Y.-L.; Lan, Y.; Xia, J.-B. J. Am. Chem. Soc. 2022, 144, 8551.
[10]
(b) Liu, X.; Lu, M.; Guo, X.; Xu, H.; Xu, J. Chem.-Eur. J. 2023, 29, e202302041.
[10]
(c) Yue, F.; Ma, H.; Ding, P.; Song, H.; Liu, Y.; Wang, Q. ACS Cent. Sci. 2023, 9, 2268.
[11]
(a) Li, W.-D.; Jiang, Y.-Q.; Li, Y.-L.; Xia, J.-B. CCS Chem. 2021, 3, 1710.
[11]
(b) Gu, Z.-Y.; Li, W.-D.; Li, Y.-L.; Cui, K.; Xia, J.-B. Angew. Chem., Int. Ed. 2023, 62, e202213281.
[11]
(c) Li, Y.-L.; Li, W.-D.; Gu, Z.-Y.; Chen, J.; Xia, J.-B. ACS Catal. 2020, 10, 1528.
[12]
Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem., Int. Ed. 1999, 38, 643.
[13]
(a) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. ACS Catal. 2022, 12, 18.
[13]
(b) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
[13]
(c) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871.
[14]
(a) Fan, Z.; Chen, S.; Zou, S.; Xi, C. ACS Catal. 2022, 12, 2781.
[14]
(b) Fan, Z.; Zhang, Z.; Xi, C. ChemSusChem 2020, 13, 6201.
[15]
(a) Jin, Y.; Toriumi, N.; Iwasawa, N. ChemSusChem 2021, 14, e202102095.
[15]
(b) Dou, Q.; Wang, T.; Li, S.; Fang, L.; Zhai, H.; Cheng, B. Chin J. Org. Chem. 2022, 42, 4257. (in Chinese)
[15]
(窦谦, 汪太民, 李嗣锋, 房丽晶, 翟宏斌, 程斌, 有机化学, 2022, 42, 4257.)
[16]
Moustafa, M. S.; Al-Mousawi, S. M.; El-Seedi, H. R.; Elnagdi, M. H. Mini-Rev. Med. Chem. 2018, 18, 992.
[17]
(a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[17]
(b) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[18]
Bunda, S.; Udvardy, A.; Voronova, K.; Joó, F. J. Org. Chem. 2018, 83, 15486.
[19]
Li, C.; Shi, Y.; Chen, Q.; Zhang, K.; Yang, G. J. Org. Chem. 2023, 88, 2306.
[20]
Wang, Y.-H.; Xu, M.-C.; Liu, J.; Zhang, L.-J.; Zhang, X.-M. Tetrahedron 2015, 71, 9598.
[21]
Velasco, R.; Silva López, C.; Nieto Faza, O.; Sanz, R. Chem.-Eur. J. 2016, 22, 15058.
[22]
Abe, T.; Mino, T.; Watanabe, K.; Yagishita, F.; Sakamoto, M. Eur. J. Org. Chem. 2014, 2014, 3909.
[23]
Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313.
[24]
Hannah, J.; Ruyle, W.; Jones, H.; Matzuk, A.; Kelly, K.; Witzel, B.; Holtz, W.; Houser, R.; Shen, T. J. Med. Chem. 1978, 21, 1093.
[25]
Shigeno, M.; Hanasaka, K.; Tohara, I.; Izumi, K.; Yamakoshi, H.; Kwon, E.; Nozawa-Kumada, K.; Kondo, Y. Org. Lett. 2022, 24, 809
[26]
He, Z. T.; Hartwig, J. F. J. Am. Chem. Soc. 2019, 141, 11749.
文章导航

/