综述与进展

基于2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)的电/光电催化在碳-氢和碳-氟键官能化中的应用进展

  • 李永梅 ,
  • 孙亮博 ,
  • 徐坤 ,
  • 曾程初
展开
  • 北京工业大学化学与生命科学学院 北京 100124

收稿日期: 2024-03-07

  修回日期: 2024-04-06

  网络出版日期: 2024-05-11

基金资助

北京市自然科学基金(2222003); 国家自然科学基金(22171015)

Recent Advances toward Electro- and Electrophotochemical 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-Catalyzed C—H/C—F Bonds Functionalization

  • Yongmei Li ,
  • Liangbo Sun ,
  • Kun Xu ,
  • Chengchu Zeng
Expand
  • College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124

Received date: 2024-03-07

  Revised date: 2024-04-06

  Online published: 2024-05-11

Supported by

Beijing Natural Science Foundation(2222003); National Natural Science Foundation of China(22171015)

摘要

2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)作为一种化学计量氧化剂, 广泛用于传统有机合成中. 近些年, 随着有机电化学的迅猛发展, DDQ催化的碳-氢官能化取得了重要研究进展. 更为重要的是, 通过电化学DDQ催化与光照的协同作用, 实现了具有挑战性的缺电子芳烃的碳-氢官能化反应. 此外, 该光电协同催化策略还可用于未活化氟代芳烃的亲核芳香取代反应. 基于此, 总结了DDQ催化的电化学以及光电化学碳-氢和碳-氟键官能化的最新研究进展, 着重论述了相关的研究策略和反应机理. 希望该综述不仅能帮助深入了解该领域, 还能助力相关研究人员拓展DDQ催化的应用范围.

本文引用格式

李永梅 , 孙亮博 , 徐坤 , 曾程初 . 基于2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)的电/光电催化在碳-氢和碳-氟键官能化中的应用进展[J]. 有机化学, 2025 , 45(2) : 668 -676 . DOI: 10.6023/cjoc202403010

Abstract

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancements in DDQ-catalyzed C—H bonds functionalization. Moreover, the challenging C—H functionalization of electron-deficient arenes has been achieved through the merger of electrochemical DDQ catalysis and photoirradiation. In addition, the synthetic utility of electrophotochemical DDQ catalysis was further demonstrated by the nucleophilic aromatic substitution (SNAr) reaction of unactivated aryl fluorides. The recent developments in electro- and electrophotochemical DDQ-catalyzed C—H/C—F func- tionalizations with attention to their strategies and mechanistic insights are summarized. It is hoped that this not only deepens the understanding of this field, but also helps relevant researchers expand the application scope of DDQ catalysis.

参考文献

[1]
Yang, Z.-F.; Cheng, Y.-F.; Zhang, B.-B.; Dong, Y.-Y.; Han, C.; Du, Y.-F. Chin. J. Org. Chem. 2022, 42, 3456 (in Chinese).
[1]
(杨治芳, 程乙夫, 张蓓蓓, 董韵怡, 韩驰, 杜云飞, 有机化学, 2022, 42, 3456.)
[2]
(a) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
[2]
(b) Liu, H.; Han, Y.; Zheng, X.; Zhao, J.; Man, Y.; Sun, L.; Zhao, Y. Chin. J. Chem. 2022, 40, 699.
[3]
A recent review, see: Alsharif, M. A.; Raja, Q. A.; Majeed, N. A.; Jassas, R. S.; Alsimaree, A. A.; Sadiq, A.; Naeem, N.; Mughal, E. U.; Alsantali, R. I.; Moussa, Z.; Ahmed, S. A. RSC Adv. 2021, 11, 29826.
[4]
A recent review, see: Natarajan, P.; K?nig, B. Eur. J. Org. Chem. 2021, 2021, 2145.
[5]
(a) Cheng, X.; Lei, A.-W.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C.-C. CCS Chem. 2022, 4, 1120.
[5]
(b) Wang, Y.; Xu, J.; Pan, Y.; Wang, Y. Org. Biomol. Chem. 2023, 21, 1121.
[5]
(c) Hou, Z.-W.; Xu, H.-C.; Wang, L. Curr. Opin. Electrochem. 2024, 44, 101447.
[5]
(d) Du, L.-L.; Zhang, H. Chin. J. Org. Chem. 2023, 43, 1726 (in Chinese).
[5]
(杜琳琳, 张华, 有机化学, 2023, 43, 1726.)
[5]
(e) Pan, Y.-Z.; Meng, X.-J.; Wang, Y.-C.; He, M.-X. Chin. J. Org. Chem. 2023, 43, 1416 (in Chinese).
[5]
(潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.)
[5]
(f) Tan, Z.-M.; Zhang, H.-N.; Xu, K.; Zeng, C.-C. Sci. China: Chem. 2024, 67, 450.
[5]
(g) Wang, Y.-L.; Dana, S.; Long, H.; Xu, Y.; Li, Y.-J.; Kaplaneris, N.; Ackermann, L. Chem. Rev. 2023, 123, 11269.
[6]
(a) Sui, D.-D.; Qin, N.-N.; Gong, R.-Q.; Chen, Y.; Chen, W.-B. Chin. J. Org. Chem. 2023, 43, 3239 (in Chinese).
[6]
(岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博, 有机化学, 2023, 43, 3239.)
[6]
(b) Lian, F.; Xu, K.; Zeng, C. CCS Chem. 2023, 5, 1973.
[6]
(c) Liu, H.-F.; He, M.-X.; Tang, H.-T. Org. Chem. Front. 2022, 9, 5955.
[6]
(d) Yu, Y.; Yuan, Y.-F.; Ye, K.-Y. Chem. Commun. 2023, 59, 422.
[6]
(e) Lian, F.; Xu, K.; Zeng, C. Sci. China: Chem. 2023, 66, 540.
[6]
(f) Zeng, L.; Wang, J.-X.; Wang, D.-X.; Yi, H.; Lei, A.-W. Angew. Chem., Int. Ed. 2023, 62, e202309620.
[6]
(g) Xiang, F.; Wang, D.-H.; Xu, K.; Zeng, C.-C. Org. Lett. 2024, 26, 411.
[6]
(h) Wang, M.-R.; Zhang, C.-Q.; Ci, C.-G.; Jiang, H.-F.; Dixneuf, P. H.; Zhang, M. J. Am. Chem. Soc. 2023, 145, 10967.
[6]
(i) Lian, F.; Luo, F.-X.; Wang, M.; Xu, K.; Zeng, C. Chin. J. Chem. 2023, 41, 1583.
[7]
(a) He, T.-Y.; Liang, C.-Q.; Huang, S.-L. Chem. Sci. 2023, 14, 143.
[7]
(b) Zheng, Y.-T.; Xu, H.-C. Angew. Chem., Int. Ed. 2023, 62, e202313273.
[7]
(c) Tan, Z.-M.; Xiang, F.; Xu, K.; Zeng, C. Org. Lett. 2022, 24, 5345.
[7]
(d) Xing, Y.-K.; Wang, Z.-H.; Fang, P.; Ma, C.; Mei, T.-S. Sci. China: Chem. 2023, 66, 2863.
[7]
(e) Jiang, J.; Wang, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1591.
[7]
(f) Zhang, J.-Y.; Zhu, W.-J.; Chen, Z.-T.; Zhang, Q.-L.; Guo, C. J. Am. Chem. Soc. 2024, 146, 1522.
[7]
(g) Francke, R.; Little, R. D. ChemElectroChem 2019, 6, 4373.
[7]
(h) Sun, J. W.; Endo, H.; Emmanuel, M. A.; Oderinde, M. S.; Kawamata, Y.; Baran, P. S. J. Am. Chem. Soc. 2024, 146, 6209.
[7]
(i) Li, P.-F.; Kou, G.-S.; Feng, T.; Wang, M.-Y.; Qiu, Y.-A. Angew. Chem., Int. Ed. 2023, 62, e202311941.
[8]
R?se, P.; Emge, S.; K?nig, C. A.; Hilt, G. Adv. Synth. Catal. 2017, 359, 1359.
[9]
Li, L.-J.; Yang, Q.; Jia, Z.-B.; Luo, S.-Z. Synthesis 2018, 50, 2924.
[10]
Hou, Z.-W.; Li, L.-Q.; Wang, L. Org. Chem. Front. 2021, 8, 4700.
[11]
(a) Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem.- Eur. J. 2020, 26, 3241.
[11]
(b) Tan, Z.-M.; He, X.-R.; Xu, K.; Zeng, C.-C. ChemSusChem 2022, 15, e202102360.
[11]
(c) Edgecomb, J. M.; Alektiar, S. N.; Cowper, N. G. W.; Sowin, J. A.; Wickens, Z. K. J. Am. Chem. Soc. 2023, 145, 20169.
[11]
(d) Zhong, P.-F.; Tu, J.-L.; Zhao, Y.-T.; Zhong, N.; Yang, C.; Guo, L.; Xia, W.-J. Nat. Commun. 2023, 14, 6530.
[11]
(e) Tan, Z.-M.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. J. Catal. 2023, 417, 473.
[11]
(f) Bi, H.-H.; Zhou, Y.; Jiang, W.; Liu, J. Adv. Synth. Catal. 2022, 364, 1732.
[11]
(g) Wang, Y.-K.; Li, L.-B.; Fu, N.-K. ACS Catal. 2023, 12, 10661.
[11]
(h) Shen, T.; Li, Y.-L.; Ye, K.-Y.; Lambert, T. H. Nature 2023, 614, 275.
[11]
(i) Hasil, A.; Chang, R.; Ye, J.-T. Chin. J. Org. Chem. 2024, 44, 728 (in Chinese).
[11]
(Hasil Aman, 常瑞, 叶俊涛, 有机化学, 2024, 44, 728.)
[12]
Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Green Chem. 2023, 25, 7959.
[13]
Huang, H.; Lambert, T. H. Angew. Chem., Int. Ed. 2021, 60, 11163.
[14]
Huang, H.; Lambert, T. H. Angew. Chem., Int. Ed. 2020, 59, 658.
[15]
Hammer, B. A. G.; Mgllen, K. Chem. Rev. 2016, 116, 2103.
[16]
Bringmann, G.; Gulder, T.; Gulde, T. A. M.; Beruning, M. Chem. Rev. 2011, 111, 563.
[17]
Ramirez, N. P.; Bosque, I.; Gonzalez-Gomez, J. C. Org. Lett. 2015, 17, 4550.
[18]
(a) Chen, N.; Xu, H.-C. Chem. Rec. 2021, 21, 2306.
[18]
(b) Wang, H.-Q.; Xu, K. Trans. Tianjin Univ. 2022, 28, 469.
[18]
(c) Zhu, Z.-L.; Li, P.-F.; Qiu, Y.-A. Chin. J. Org. Chem. 2024, 44, 871 (in Chinese).
[18]
(朱子乐, 李鹏飞, 仇友爱, 有机化学, 2024, 44, 871.)
[19]
Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
[20]
Diness, F.; Fairlie, D. P. Angew. Chem., Int. Ed. 2012, 51, 8012.
文章导航

/