烯醇硅醚参与的自由基反应研究进展
收稿日期: 2024-02-07
修回日期: 2024-04-09
网络出版日期: 2024-05-17
基金资助
国家自然科学基金(21801023); 湖南省教育厅科学研究基金(21B0312); 湖南省教育厅科学研究基金(22B0339)
Research Progress of Radical Reactions Involving Silyl Enol Ethers
Received date: 2024-02-07
Revised date: 2024-04-09
Online published: 2024-05-17
Supported by
National Natural Science Foundation of China(21801023); Scientific Research Fund of Hunan Provincial Education Department(21B0312); Scientific Research Fund of Hunan Provincial Education Department(22B0339)
由于烯醇硅醚具有独特的反应活性, 其在有机合成中得到了广泛的应用. 烯醇硅醚能参与Mukaiyama aldol反应和Mukaiyama-Michael加成反应等经典有机合成反应, 从而构建新的C—C键. 但是由于离子型反应的局限性, 很多复杂分子的合成需要借助更多新型高效的反应, 而烯醇硅醚参与的自由基反应能够在多种反应体系中展现出良好的性能. 总结了近十年来烯醇硅醚作为多功能和高效的反应前体合成α-取代羰基化合物和其他功能有机分子的反应, 并讨论了各种反应体系(光促进、金属催化、无金属参与和电催化)下研究人员对反应的设计、机理的研究以及该研究课题未来的展望.
张朝阳 , 罗维纬 , 周俊 . 烯醇硅醚参与的自由基反应研究进展[J]. 有机化学, 2024 , 44(9) : 2658 -2681 . DOI: 10.6023/cjoc202402007
Due to the unique reactivity of silyl enol ethers, they have been widely employed in organic synthesis. As masked enol, they participate in classical reactions, such as Mukaiyama aldol reactions and Mukaiyama Michael additions, which can construct new C—C bonds. However, the synthesis of complex molecules often requires the utilization of novel and more efficient reaction pathways due to the limitations of ionic reactions. Silyl enol ethers exhibit excellent performance across various reaction systems involved in radical reactions. This article provides a comprehensive research summary of the synthesis of α-substituted carbonyl compounds and other functional organic molecules using silyl enol ethers as versatile and efficient reaction precursors which were reported in the past decade. The design of reactions and mechanisms was discussed by researchers under different reaction systems including photocatalysis, metal catalysis, metal-free reactions, and electrocatalysis, as well as the future prospect of this research topic.
Key words: silyl enol ether; radical reaction; α-carbonyl compound; transition metal
| [1] | House, H. O.; Kramar, V. J. Org. Chem. 1963, 28, 3362. |
| [2] | Stork, G.; Hudrlik, P, F. J. Am. Chem. Soc. 1968, 90, 4462. |
| [3] | (a) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503. |
| [3] | (b) Adhikari, S.; Caille, S.; Hanbauer, M.; Ngo, V. X.; Overman, L. E. Org. Lett. 2005, 7, 2795. |
| [3] | (c) Webb, M. R.; Addie, M. S.; Crawforth, C. M.; Dale, J. W.; Franci, X.; Pizzonero, M.; Donald, C.; Taylor, R. J. K. Tetrahedron 2008, 64, 4778. |
| [3] | (d) Gao, S. H.; Wang, Q. L.; Chen, C. J. Am. Chem. Soc. 2009, 131, 1410. |
| [4] | (a) Mukaiyama, T. Angew. Chem., Int. Ed. 2004, 43, 5590. |
| [4] | (b) Frías, M.; Cie?lik, W.; Fraile, A.; Rosado-Abón, A.; Garrido-Castro, A. F.; Yuste. F.; Alemán. J. Chem.-Eur. J. 2018, 24, 10906. |
| [4] | (c) Wang, X.; Adachi, S.; Iwai, H.; Takatsuki, H.; Fujita, K.; Kubo, M.; Oku, A.; Harada, T. J. Org. Chem. 2003, 68, 10046. |
| [5] | Seo, Y. H.; Carroll, K. S. PNAS 2009, 106, 16163. |
| [6] | Wright, W. C.; Chenge, J.; Wang, J. H.; Girvan, H. M.; Yang, L.; Chai, S. C.; Huber, A. D.; Wu, J.; Oladimeji, P. O.; Munro, A. W.; Chen, T. S. J. Med. Chem. 2020, 63, 1415. |
| [7] | Tsuyoshi, M.; Hidezumi, K.; Hidezumi, K.; Hidezumi, K.; Ya-sumoto, A. CN 1242771, 2000. (in Chinese). |
| [7] | (松本刚, 河合英村, 冈野清, 森胜之, 足立泰基, CN 1242771, 2000.) |
| [8] | Allan, G. M.; Vicker, N.; Lawrence, H. R.; Tutill, H. J.; Day, J. M.; Huchet, M.; Ferrandis, E.; Reed, M. J.; Purohit, A.; Potter, B. V. L. Bioorg. Med. Chem. 2008, 16, 4438. |
| [9] | Guo, M. M.; Yu, Z. L.; Chen, Y. L.; Ge, D. H.; Ma, M. T.; Shen, Z. L.; Chu, X. Q. Chin. J. Org. Chem. 2022, 42, 3562 (in Chinese). |
| [9] | (郭檬檬, 于子伦, 陈玉兰, 葛丹华, 马猛涛, 沈志良, 褚雪强, 有机化学, 2022, 42, 3562.) |
| [10] | Levin, V. V.; Dilman, A. D. Chem. Rec. 2023, 23, e202300038. |
| [11] | Huang, M. W.; Li, L.; Zhao, Z. G.; Chen, Q. Y.; Guo, Y. Synthesis 2015, 47, 3891. |
| [12] | Chernov, G. N.; Levin, V. V.; Kokorekin, V. A.; Struchkova, M. I.; Dilman, A. D. Adv. Synth. Catal. 2017, 359, 3063. |
| [13] | Scherbinina, S. I.; Fedorov, O. V.; Levin, V. V.; Kokorekin, V. A.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2017, 82, 12967. |
| [14] | Yu, W.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2018, 36, 1024. |
| [15] | Esumi, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M. Org. Lett. 2016, 18, 5704. |
| [16] | Han, Y. Y.; Jiao, Y. Y.; Ren, D.; Hu, Z. T.; Shen, S.; Yu, S. Y. Asian J. Org. Chem. 2017, 6, 414. |
| [17] | Zhao, B.; Shang, R.; Wang, G, Z.; Wang, S. H.; Chen, H.; Fu, Y. ACS Catal. 2020, 10, 2, 1334. |
| [18] | Supranovich, V. I.; Levin, V. V.; Dilman, A. D. Beilstein J. Org. Chem. 2020, 16, 1550. |
| [19] | Cao, H. Y.; Ma, S. S.; Feng, Y. H.; Guo, Y. W.; Jiao, P. Chem. Commun. 2022, 58, 1780. |
| [20] | Ma, R. S.; Deng, Z. B.; Wang, K. H.; Wang, J. J.; Huang, D. F.; Su, Y. P.; Hu, Y. L.; Lv, X. B. ACS. Omega 2022, 7, 14357. |
| [21] | Briand, M.; Thai, L.; Bourdreux, F.; Vanthuyne, N.; Moreau, X.; Magnier, E.; Anselmi, E.; Dagousset, G. Org. Lett. 2022, 24, 9375. |
| [22] | Cai, S. H.; Xie, J. H.; Song, S. J.; Ye, L.; Feng, C.; Loh, T. P. ACS Catal. 2016, 6, 5571. |
| [23] | (a) Kong, W. G.; Yu, C. J.; An, H. J.; Song, Q. L. Org. Lett. 2018, 20, 349. |
| [23] | (b) Maslak, P.; Narvaez, J. N. Angew. Chem., Int. Ed. Engl. 1990, 29, 283. |
| [24] | Zemtsov, A. A.; Ashirbaev, S. S.; Levin, V. V.; Kokorekin, V. A.; Korlyukov, A. A.; Dilman, A. D. J. Org. Chem. 2019, 84, 15745. |
| [25] | Xing, W. L.; Shang, R.; Wang, G. Z.; Fu, Y. Chem. Commun. 2019, 95, 14291. |
| [26] | Luo, Q. Y.; Mao, R. Y.; Zhu, Y.; Wang, Y. H. J. Org. Chem. 2019, 84, 13897. |
| [27] | Spinnato, D.; Schweitzer-Chaput, B.; Goti, G.; O?eka, M.; Melchiorre, P. Angew. Chem., Int. Ed. 2020, 59, 9485. |
| [28] | Selmi-Higashi, E.; Zhang, J. L.; Cambeiro, X. C.; Arseniyadis, S. ; Org. Lett. 2021, 23, 4239. |
| [29] | He, F. S.; Bao, P.; Tang, Z. M.; Yu, F. Y.; Deng, W. P.; Wu, J. Org. Lett. 2022, 24, 2955. |
| [30] | Cui, W. W.; Guo, G. J.; Wang, Y. F.; Song, X. Y.; Lv, J.; Yang, D. S. Chem. Commun. 2023, 59, 6367. |
| [31] | Gong, X, X.; Ding, Y. C.; Fan, X. N.; Wu, J. Adv. Synth. Catal. 2017, 359, 2999. |
| [32] | Ye, S. Q.; Zhou, K. D.; Rojsitthisak, P.; Wu, J. Org. Chem. Front. 2020, 7, 14. |
| [33] | Huang, Q. P.; Li, W. P.; Li, R.; Zhao, L.; Wang, H. Y.; Li, X. F.; Wang, P.; He, C. Y. Tetrahedron Lett. 2022, 97, 153782. |
| [34] | Mao, R.Y.; Yuan, Z.; Li, Y. W.; Wu, J. Chem. Eur. J. 2017, 23, 8176. |
| [35] | Wang, J. X.; Ge, W.; Xing, W. L.; Fu, M. C. J. Org. Chem. 2021, 86, 18224. |
| [36] | Terlizzi, L. D.; Cola, I.; Raviola, C.; Fagnoni, M.; Protti, S. ACS Org. Inorg Au 2021, 1, 68. |
| [37] | Liu, C.; Shen, N.; Shang, R. Org. Chem. Front. 2021, 8, 4166. |
| [38] | Dewanji, A.; van Dalsen, L.; Rossi-Ashton, J. A., Gasson, E.; Crisenza, G. E. M.; Procter, D. J. Nat. Chem. 2023, 15, 43. |
| [39] | Li, Y. L.; Liu, J.; Zhao, S.; Du, X. Z.; Guo, M. J.; Zhao, W. T.; Tang, X. Y.; Wang, G. W. Org. Lett. 2018, 20, 917. |
| [40] | Li, D. K. Tetrahedron. Lett. 2021, 87, 153551. |
| [41] | Li, D. K. J. Org. Chem. 2021, 86, 609. |
| [42] | Li, L.; Chen, Q. Y.; Guo, Y. J. Org. Chem. 2014, 79, 5145. |
| [43] | Jacquet, J.; Blanchard, S.; Derat, E.; Murr, M. D. E.; Fensterbank, L. Chem. Sci. 2016, 7, 2030. |
| [44] | Amaya, T.; Maegawa, Y.; Masuda, T.; Osafune, Y.; Hirao, T. J. Am. Chem. Soc. 2015, 137, 10072. |
| [45] | Amaya, T.; Osafune, Y.; Maegawa, Y.; Hirao, T. Chem. Asian J. 2017, 12, 1301. |
| [46] | Osafune, Y.; Jin, Y. Q.; Hirao, T.; Tobisu, M.; Amaya, T. Chem. Commun. 2020, 56, 11697. |
| [47] | Yang, H. B.; Selander, N. Chem.-Eur. J. 2017, 23, 1779. |
| [48] | Zhang, X. X.; Huang, H. M. Org. Lett. 2018, 20, 4998. |
| [49] | Xu, L.; Liu, X. Y.; Alvey, G. R.; Shatskiy, A.; Liu, J. Q.; K?rk?s, M. D.; Wang, X. S. Org. Lett. 2022, 24, 4513. |
| [50] | Zhang, T. Y.; Wu, Y.; Liu, S.; Tao, J. Q.; Yang, X.; Wang, X. Q.; Duan, X. H.; Guo, L. N. Org. Lett. 2023, 25, 4329. |
| [51] | Ge, H. C.; Du, K. Y.; Sheng, W. J. Chin. J. Org. Chem. 2020, 40, 1625 (in Chinese). |
| [51] | (葛浩程, 杜科莹, 盛卫坚, 有机化学, 2020, 40, 1625.) |
| [52] | Liu, T. S.; Zheng, D. Q.; Ding, Y. C.; Fan, X. N.; Wu, J. Chem. Asian J. 2017, 12, 465. |
| [53] | Parida, K. N.; Pathe, G. K.; Maksymenko, S.; Szpilman, A. M. Beilstein J. Org. Chem. 2018, 14, 992. |
| [54] | Felipe-Blanco, D.; Gonzalez-Gomez, J. C. Adv. Synth. Catal. 2018, 360, 2773. |
| [55] | Tang, Y. C.; Qu, H.; Zhang, W. X.; Wang, F. F.; Wang, G. Chem. J. Chin. Univ. 2020, 41, 118 (in Chinese). |
| [55] | (唐裕才, 屈煌, 张文熙, 王菲菲, 王钢, 高等学校化学学报, 2020, 41, 118.) |
| [56] | Strehl, J.; Hilt, G. Org. Lett. 2019, 21, 13, 5259. |
| [57] | Jud, W.; Sommer, F.; Kappe, C. O.; Cantillo, D. J. Org. Chem., 2021, 86, 16026. |
| [58] | Pastor, M.; Vayer, M.; Weinstabl, H.; Maulide, N. J. Org. Chem. 2022, 87, 606. |
/
| 〈 |
|
〉 |