综述与进展

碳氢链的选择性多位点官能化反应研究进展

  • 王军威 ,
  • 刘慧康 ,
  • 杨泽华 ,
  • 吴正兴 ,
  • 张万斌
展开
  • a 南华大学衡阳医学院药学院 药物药理研究所 湖南衡阳 421001
    b 上海交通大学化学化工学院 上海市手性药物分子工程重点实验室 上海 200240

收稿日期: 2024-04-09

  修回日期: 2024-05-14

  网络出版日期: 2024-05-23

基金资助

国家自然科学基金(21831005); 国家自然科学基金(21991112); 湖南省自然科学基金(2023JJ30500)

Research Progress on Selective Multi-site Functionalization of Hydrocarbon Chains

  • Junwei Wang ,
  • Huikang Liu ,
  • Zehua Yang ,
  • Zhengxing Wu ,
  • Wanbin Zhang
Expand
  • a Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001
    b Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2024-04-09

  Revised date: 2024-05-14

  Online published: 2024-05-23

Supported by

National Natural Science Foundation of China(21831005); National Natural Science Foundation of China(21991112); Natural Science Foundation of Hunan Province(2023JJ30500)

摘要

碳氢链的选择性官能化是合成化学中的重要科学问题, 从简单易得的烷烃或烯烃出发直接官能化是其高效和高附加值转化的理想方法, 其中碳氢链上[包括C=C双键和C(sp3)—H键]选择性多位点官能化可以通过一步反应同时构建多个化学键, 从而极大地提高化合物的合成效率. 例如碳氢链多乙酰氧化反应可以用于多羟基糖类化合物的高效制备, 尤其是在生物和医药领域有重要价值但在自然界中罕见的稀有单糖. 从烷烃的多位点官能化和烯烃的多位点官能化反应两个方面总结了近年来碳氢链选择性多位点官能化反应的研究进展.

本文引用格式

王军威 , 刘慧康 , 杨泽华 , 吴正兴 , 张万斌 . 碳氢链的选择性多位点官能化反应研究进展[J]. 有机化学, 2024 , 44(11) : 3273 -3281 . DOI: 10.6023/cjoc202404010

Abstract

Selective functionalization of hydrocarbon chains is an important scientific problem in synthetic chemistry, and direct functionalization of easily available alkanes or alkenes is an ideal method for their efficient and high value-added conversion. Selective multi-site functionalization on the hydrocarbon chain (including C=C double bonds and C(sp3)—H bonds) can construct multiple chemical bonds in a one-step reaction, greatly improving the synthesis efficiency of compounds. For example, the multi-acetoxylation of hydrocarbon chains can be used for the efficient preparation of polyhydroxyl compounds, especially rare monosaccharides that are of great value in biology and medicine but rarely found in nature. The research progress in selective multi-site functionalization of hydrocarbon chains in recent years summarized from two aspects: multi-site functionalization of alkanes and multi-site functionalization of alkenes.

参考文献

[1]
For selected reviews on activation of C—H bonds: (a) Aman H.; Chang R.; Ye J. Chin. J. Org. Chem. 2024, 44, 728 (in Chinese).
[1]
(Hasil Aman 常瑞, 叶俊涛, 有机化学, 2024, 44, 728.)
[1]
(b) Liu N.; Cuan X.; Li H.; Duan X. Chin. J. Org. Chem. 2023, 43, 602 (in Chinese).
[1]
(刘宁, 爨晓丹, 李慧, 段希焱, 有机化学, 2023, 43, 602.)
[1]
(c) Sinha S. K.; Guin S.; Maiti S.; Biswas J. P.; Porey S.; Maiti D. Chem. Rev. 2022, 122, 5682.
[1]
(d) Wang P.-S.; Gong L.-Z. Acc. Chem. Res. 2020, 53, 2841.
[1]
(e) He J.; Wasa M.; Chan K. S. L.; Shao Q.; Yu J.-Q. Chem. Rev. 2017, 117, 8754.
[1]
(f) Hartwig J. F. J. Am. Chem. Soc. 2016, 138, 2.
[2]
For selected reviews on functionalization of alkenes: (a) Zhao Z.; Zhang F.; Wang D.; Deng L. Chin. J. Chem. 2023, 41, 3063.
[2]
(b) Sun W.; Zhu S. Chin. J. Org. Chem. 2023, 43, 3339 (in Chinese).
[2]
(孙伟, 朱守非, 有机化学, 2023, 43, 3339.)
[2]
(c) Zhang J.; Zhang C.; Mo N.; Luo J.; Chen L.; Liu W. Chin. J. Org. Chem. 2023, 43, 3098 (in Chinese).
[2]
(张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵, 有机化学, 2023, 43, 3098.)
[2]
(d) Li S.; Shu X.; Wu L. Chin. J. Org. Chem. 2023, 43, 1751 (in Chinese).
[2]
(李思达, 舒兴中, 吴立朋, 有机化学, 2023, 43, 1751.)
[2]
(e) Luo M.-J.; Xiao Q.; Li J.-H. Chem. Soc. Rev. 2022, 51, 7206.
[2]
(f) Zhang M.; Ji Y.; Zhang C. Chin. J. Chem. 2022, 40, 1608.
[2]
(g) Li X.; Tao P.; Cheng Y.; Hu Q.; Huang W.; Li Y.; Luo Z.; Huang G. Chin. J. Org. Chem. 2022, 42, 4169 (in Chinese).
[2]
(李秀英, 陶萍芳, 程泳渝, 胡琼, 黄伟娟, 李芸, 罗志辉, 黄国保, 有机化学, 2022, 42, 4169.)
[2]
(h) Lu H.; Li B. Chin. J. Org. Chem. 2022, 42, 3167 (in Chinese).
[2]
(陆候祥, 李必杰, 有机化学, 2022, 42, 3167.)
[2]
(i) Wickham L. M.; Giri R. Acc. Chem. Res. 2021, 54, 3415.
[2]
(j) Kaur N.; Wu F.; Alom N.-E.; Ariyarathna J. P.; Saluga S. J.; Li W. Org. Biomol. Chem. 2019, 17, 1643.
[2]
(k) Obligacion J. V.; Chirik P. J. Nat. Rev. Chem. 2018, 2, 15.
[2]
(l) Margrey K. A.; Nicewicz D. A. Acc. Chem. Res. 2016, 49, 1997.
[2]
(m) Mann S. E.; Benhamou L.; Sheppard T. D. Synthesis 2015, 47, 3079.
[2]
(n) McDonald R. I.; Liu G.; Stahl S. S. Chem. Rev. 2011, 111, 2981.
[3]
Ghosh S.; Lai D.; Hajra A. Org. Biomol. Chem. 2020, 18, 7948.
[4]
Elshahawi S. I.; Shaaban K. A.; Kharel M. K.; Thorson J. S. Chem. Soc. Rev. 2015, 44, 7591.
[5]
Castillo E. D.; Martínez M. D.; Bosnidou A. E.; Duhamel T.; O’Broin C. Q.; Zhang H.; Escudero-Adán E. C.; Martínez- Belmonte M.; Mu?iz K. Chem.-Eur. J. 2018, 24, 17225.
[6]
Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2023, 614, 275.
[7]
Kutateladze A. G.; Kice J. L.; Kutateladze T. G. J. Org. Chem. 1993, 58, 995.
[8]
Wang B.; Du H.; Shi Y. Angew. Chem., Int. Ed. 2008, 47, 8224.
[9]
Duan X.-Y.; Yang X.-L.; Fang R.; Peng X.-X.; Yu W.; Han B. J. Org. Chem. 2013, 78, 10692.
[10]
Chen J. S.; Abeykoon G. A. Org. Lett. 2015, 17, 6050.
[11]
Zhao Y.; Ge S. Angew. Chem., Int. Ed. 2022, 61, e202116133.
[12]
Zhang L.; Huang Z. J. Am. Chem. Soc. 2015, 137, 15600.
[13]
Hu J.; Zhao Y.; Shi Z. Nat. Catal. 2018, 1, 860.
[14]
Wu Z.; Meng J.; Liu H.; Li Y.; Zhang X.; Zhang W. Nat. Chem. 2023, 15, 988.
[15]
Ge Q.; Meng J.; Liu H.; Yang Z.; Wu Z.; Zhang W. Chin. J. Chem. 2022, 40, 2269.
[16]
Hu S.-P.; Gao C.-H.; Liu T.-M.; Miao B.-Y.; Wang H.-C.; Yu W.; Han B. Angew. Chem., Int. Ed. 2024, e202400168.
文章导航

/