碳氢链的选择性多位点官能化反应研究进展
收稿日期: 2024-04-09
修回日期: 2024-05-14
网络出版日期: 2024-05-23
基金资助
国家自然科学基金(21831005); 国家自然科学基金(21991112); 湖南省自然科学基金(2023JJ30500)
Research Progress on Selective Multi-site Functionalization of Hydrocarbon Chains
Received date: 2024-04-09
Revised date: 2024-05-14
Online published: 2024-05-23
Supported by
National Natural Science Foundation of China(21831005); National Natural Science Foundation of China(21991112); Natural Science Foundation of Hunan Province(2023JJ30500)
王军威 , 刘慧康 , 杨泽华 , 吴正兴 , 张万斌 . 碳氢链的选择性多位点官能化反应研究进展[J]. 有机化学, 2024 , 44(11) : 3273 -3281 . DOI: 10.6023/cjoc202404010
Selective functionalization of hydrocarbon chains is an important scientific problem in synthetic chemistry, and direct functionalization of easily available alkanes or alkenes is an ideal method for their efficient and high value-added conversion. Selective multi-site functionalization on the hydrocarbon chain (including C=C double bonds and C(sp3)—H bonds) can construct multiple chemical bonds in a one-step reaction, greatly improving the synthesis efficiency of compounds. For example, the multi-acetoxylation of hydrocarbon chains can be used for the efficient preparation of polyhydroxyl compounds, especially rare monosaccharides that are of great value in biology and medicine but rarely found in nature. The research progress in selective multi-site functionalization of hydrocarbon chains in recent years summarized from two aspects: multi-site functionalization of alkanes and multi-site functionalization of alkenes.
Key words: hydrocarbon chain; selectivity; multi-site; functionalization
| [1] | For selected reviews on activation of C—H bonds: (a) Aman H.; Chang R.; Ye J. Chin. J. Org. Chem. 2024, 44, 728 (in Chinese). |
| [1] | (Hasil Aman 常瑞, 叶俊涛, 有机化学, 2024, 44, 728.) |
| [1] | (b) Liu N.; Cuan X.; Li H.; Duan X. Chin. J. Org. Chem. 2023, 43, 602 (in Chinese). |
| [1] | (刘宁, 爨晓丹, 李慧, 段希焱, 有机化学, 2023, 43, 602.) |
| [1] | (c) Sinha S. K.; Guin S.; Maiti S.; Biswas J. P.; Porey S.; Maiti D. Chem. Rev. 2022, 122, 5682. |
| [1] | (d) Wang P.-S.; Gong L.-Z. Acc. Chem. Res. 2020, 53, 2841. |
| [1] | (e) He J.; Wasa M.; Chan K. S. L.; Shao Q.; Yu J.-Q. Chem. Rev. 2017, 117, 8754. |
| [1] | (f) Hartwig J. F. J. Am. Chem. Soc. 2016, 138, 2. |
| [2] | For selected reviews on functionalization of alkenes: (a) Zhao Z.; Zhang F.; Wang D.; Deng L. Chin. J. Chem. 2023, 41, 3063. |
| [2] | (b) Sun W.; Zhu S. Chin. J. Org. Chem. 2023, 43, 3339 (in Chinese). |
| [2] | (孙伟, 朱守非, 有机化学, 2023, 43, 3339.) |
| [2] | (c) Zhang J.; Zhang C.; Mo N.; Luo J.; Chen L.; Liu W. Chin. J. Org. Chem. 2023, 43, 3098 (in Chinese). |
| [2] | (张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵, 有机化学, 2023, 43, 3098.) |
| [2] | (d) Li S.; Shu X.; Wu L. Chin. J. Org. Chem. 2023, 43, 1751 (in Chinese). |
| [2] | (李思达, 舒兴中, 吴立朋, 有机化学, 2023, 43, 1751.) |
| [2] | (e) Luo M.-J.; Xiao Q.; Li J.-H. Chem. Soc. Rev. 2022, 51, 7206. |
| [2] | (f) Zhang M.; Ji Y.; Zhang C. Chin. J. Chem. 2022, 40, 1608. |
| [2] | (g) Li X.; Tao P.; Cheng Y.; Hu Q.; Huang W.; Li Y.; Luo Z.; Huang G. Chin. J. Org. Chem. 2022, 42, 4169 (in Chinese). |
| [2] | (李秀英, 陶萍芳, 程泳渝, 胡琼, 黄伟娟, 李芸, 罗志辉, 黄国保, 有机化学, 2022, 42, 4169.) |
| [2] | (h) Lu H.; Li B. Chin. J. Org. Chem. 2022, 42, 3167 (in Chinese). |
| [2] | (陆候祥, 李必杰, 有机化学, 2022, 42, 3167.) |
| [2] | (i) Wickham L. M.; Giri R. Acc. Chem. Res. 2021, 54, 3415. |
| [2] | (j) Kaur N.; Wu F.; Alom N.-E.; Ariyarathna J. P.; Saluga S. J.; Li W. Org. Biomol. Chem. 2019, 17, 1643. |
| [2] | (k) Obligacion J. V.; Chirik P. J. Nat. Rev. Chem. 2018, 2, 15. |
| [2] | (l) Margrey K. A.; Nicewicz D. A. Acc. Chem. Res. 2016, 49, 1997. |
| [2] | (m) Mann S. E.; Benhamou L.; Sheppard T. D. Synthesis 2015, 47, 3079. |
| [2] | (n) McDonald R. I.; Liu G.; Stahl S. S. Chem. Rev. 2011, 111, 2981. |
| [3] | Ghosh S.; Lai D.; Hajra A. Org. Biomol. Chem. 2020, 18, 7948. |
| [4] | Elshahawi S. I.; Shaaban K. A.; Kharel M. K.; Thorson J. S. Chem. Soc. Rev. 2015, 44, 7591. |
| [5] | Castillo E. D.; Martínez M. D.; Bosnidou A. E.; Duhamel T.; O’Broin C. Q.; Zhang H.; Escudero-Adán E. C.; Martínez- Belmonte M.; Mu?iz K. Chem.-Eur. J. 2018, 24, 17225. |
| [6] | Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2023, 614, 275. |
| [7] | Kutateladze A. G.; Kice J. L.; Kutateladze T. G. J. Org. Chem. 1993, 58, 995. |
| [8] | Wang B.; Du H.; Shi Y. Angew. Chem., Int. Ed. 2008, 47, 8224. |
| [9] | Duan X.-Y.; Yang X.-L.; Fang R.; Peng X.-X.; Yu W.; Han B. J. Org. Chem. 2013, 78, 10692. |
| [10] | Chen J. S.; Abeykoon G. A. Org. Lett. 2015, 17, 6050. |
| [11] | Zhao Y.; Ge S. Angew. Chem., Int. Ed. 2022, 61, e202116133. |
| [12] | Zhang L.; Huang Z. J. Am. Chem. Soc. 2015, 137, 15600. |
| [13] | Hu J.; Zhao Y.; Shi Z. Nat. Catal. 2018, 1, 860. |
| [14] | Wu Z.; Meng J.; Liu H.; Li Y.; Zhang X.; Zhang W. Nat. Chem. 2023, 15, 988. |
| [15] | Ge Q.; Meng J.; Liu H.; Yang Z.; Wu Z.; Zhang W. Chin. J. Chem. 2022, 40, 2269. |
| [16] | Hu S.-P.; Gao C.-H.; Liu T.-M.; Miao B.-Y.; Wang H.-C.; Yu W.; Han B. Angew. Chem., Int. Ed. 2024, e202400168. |
/
| 〈 |
|
〉 |