研究论文

圆偏振发光三重氮杂[6]螺烯: N-烷基化调控其手性光学性质

  • 夏羽菲 ,
  • 江丽 ,
  • 杨巧 ,
  • 于琇 ,
  • 陈丰坤
展开
  • 东华大学材料科学与工程学院 纤维材料改性国家重点实验室 上海 201620

收稿日期: 2024-05-07

  修回日期: 2024-05-17

  网络出版日期: 2024-05-23

基金资助

国家自然科学基金(22171044)

Triple Aza[6]helicenes with Circularly Polarized Luminescence: N-Alkylation as a Tool to Tune the Chiroptical Properties

  • Yufei Xia ,
  • Li Jiang ,
  • Qiao Yang ,
  • Xiu Yu ,
  • Fengkun Chen
Expand
  • State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620

Received date: 2024-05-07

  Revised date: 2024-05-17

  Online published: 2024-05-23

Supported by

National Natural Science Foundation of China(22171044)

摘要

近年来, 多重螺烯因其高度扭曲的共轭结构、有趣的光学性质以及特异的分子间相互作用等特性, 受到了广泛关注. 杂原子掺杂可进一步对多重螺烯分子的结构和光学性质进行有效调控. 通过分子内氧化反应构筑了第一例三重氮杂[6]螺烯分子. 单晶X射线衍射结果显示该分子具有高度扭曲的三维螺旋桨式结构. 与已报道的三重氧杂[6]螺烯相比, 三重氮杂[6]螺烯的荧光量子产率提高至5.5%, 而其吸收和发射不对称因子(|gabs|和|glum|)也得以增强, 分别达1.2×10-2和3.0×10-3, 且通过N-烷基化进一步增强该三重氮杂[6]螺烯的稳定性和手性光学性质.

本文引用格式

夏羽菲 , 江丽 , 杨巧 , 于琇 , 陈丰坤 . 圆偏振发光三重氮杂[6]螺烯: N-烷基化调控其手性光学性质[J]. 有机化学, 2024 , 44(9) : 2841 -2846 . DOI: 10.6023/cjoc202405006

Abstract

Recently, multiple helicenes have attracted enormous attention due to their exceptionally distorted conjugated architectures, appealing optical properties and unique spatial stacking patterns. The electronic and optical properties of multiple helicenes could be modulated by heteroatom doping. Herein, the first triple aza[6]helicene was reported by an intramolecular oxidation reaction, which exhibited highly distorted propeller-like geometry revealed by single crystal X-ray diffraction analysis. In comparison to the reported triple oxa[6]helicene, the triple aza[6]helicene demonstrated increased quantum yield (5.5%), and chiroptical properties with a |gabs| value of 0.012 and a |glum| value of 3.0×10-3. Furthermore, the stability and chiroptical properties of the triple aza[6]helicene could be enhanced by N-alkylation.

参考文献

[1]
Petrukhina, M. A.; Scott, L. T. Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, Wiley, Hoboken, New Jersey, 2011.
[2]
(a) Pun, S. H.; Miao, Q. Acc. Chem. Res. 2018, 51, 1630.
[2]
(b) Chao, L.; Stepek, I. A.; Yamada, K. E.; Ito, H.; Itami, K. Angew. Chem., Int. Ed. 2021, 60, 23508.
[2]
(c) Majewski, M. A.; St?pień, M. Angew. Chem., nt. Ed. 2019, 58, 86.
[3]
(a) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.
[3]
(b) Gingras, M. Chem. Soc. Rev. 2013, 42, 968.
[3]
(c) Crassous, J.; Stará, I. G.; Stary, I. Helicenes: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, 2022.
[4]
(a) Fang, L.; Lin, W.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541 (in Chinese).
[4]
(房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.)
[4]
(b) Narcis, M. J.; Takenaka, N. Eur. J. Org. Chem. 2014, 2014, 21.
[5]
(a) Zhao, W.-L.; Li, M.; Lu, H.-Y.; Chen, C.-F. Chem. Commun. 2019, 55, 13793.
[5]
(b) Mori, T. Chem. Rev. 2021, 121, 2373.
[6]
(a) Shen, C.; Gan, F.; Zhang, G.; Ding, Y.; Wang, J.; Wang, R.; Crassous, J.; Qiu, H. Mater. Chem. Front. 2020, 4, 837.
[6]
(b) Kubo, H.; Hirose, T.; Nakashima, T.; Kawai, T.; Hasegawa, J.-Y.; Matsuda, K. J. Phys. Chem. Lett. 2021, 12, 686.
[6]
(c) Shen, Y.-J.; Yao, N.-T.; Diao, L.-N.; Yang, Y.; Chen, X.-L.; Gong, H.-Y. Angew. Chem., nt. Ed. 2023, 62, e202300840.
[6]
(d) Huo, G.-F.; Xu, W.-T.; Han, Y.; Zhu, J.; Hou, X.; Fan, W.; Ni, Y.; Wu, S.; Yang, H.-B.; Wu, J. Angew. Chem., nt. Ed. 2024, 63, e202403149.
[7]
(a) Kiran, V.; Mathew, S. P.; Cohen, S. R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Adv. Mater. 2016, 28, 1957.
[7]
(b) Pan, T.-R.; Guo, A.-M.; Sun, Q.-F. Phys. Rev. B 2016, 94, 235448.
[7]
(c) Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K.-H.; Zacharias, H. J. Phys. Chem. Lett. 2018, 9, 2025.
[7]
(d) Rodríguez, R.; Naranjo, C.; Kumar, A.; Matozzo, P.; Das, T. K.; Zhu, Q.; Vanthuyne, N.; Gómez, R.; Naaman, R.; Sánchez, L.; Crassous, J. J. Am. Chem. Soc. 2022, 144, 7709.
[8]
(a) Li, C.; Yang, Y.; Miao, Q. Chem.-Asian J. 2018, 13, 884.
[8]
(b) Wu, Y.-F.; Zhang, L.; Zhang, Q.; Xie, S.-Y.; Zheng, L.-S. Org. Chem. Front. 2022, 9, 4726.
[9]
(a) Zhu, Y.; Xia, Z.; Cai, Z.; Yuan, Z.; Jiang, N.; Li, T.; Wang, Y.; Guo, X.; Li, Z.; Ma, S.; Zhong, D.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2018, 140, 4222.
[9]
(b) Chen, F.; Gu, W.; Saeki, A.; Melle-Franco, M.; Mateo-Alonso, A. Org. Lett. 2020, 22, 3706.
[9]
(c) Artigas, A.; Rigoulet, F.; Giorgi, M.; Hagebaum-Reignier, D.; Carissan, Y.; Coquerel, Y. J. Am. Chem. Soc. 2023, 145, 15084.
[10]
Hosokawa, T.; Takahashi, Y.; Matsushima, T.; Watanabe, S.; Kikkawa, S.; Azumaya, I.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2017, 139, 18512.
[11]
(a) Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T. Commun. Chem. 2018, 1, 38.
[11]
(b) Niu, W.; Fu, Y.; Qiu, Z.-L.; Schürmann, C. J.; Obermann, S.; Liu, F.; Popov, A. A.; Komber, H.; Ma, J.; Feng, X. J. Am. Chem. Soc. 2023, 145, 26824.
[12]
Yang, W.-W.; Shen, J.-J. Chem.-Eur. J. 2022, 28, e202202069.
[13]
(a) Guo, X.; Yuan, Z.; Zhu, Y.; Li, Z.; Huang, R.; Xia, Z.; Zhang, W.; Li, Y.; Wang, J. Angew. Chem., nt. Ed. 2019, 58, 16966.
[13]
(b) Li, J.-K.; Chen, X.-Y.; Guo, Y.-L.; Wang, X.-C.; Sue, A. C. H.; Cao, X.-Y.; Wang, X.-Y. J. Am. Chem. Soc. 2021, 143, 17958.
[13]
(c) Zhang, L.; Chen, S.; Jiang, J.; Dong, X.; Cai, Y.; Zhang, H.-J.; Lin, J.; Jiang, Y.-B. Org. Lett. 2022, 24, 3179.
[13]
(d) Tan, D.; Dong, J.; Ma, T.; Feng, Q.; Wang, S.; Yang, D.-T. Angew. Chem., Int. Ed. 2023, 62, e202304711.
[13]
(e) Sun, Z.; Xu, W.; Qiu, S.; Ma, Z.; Li, C.; Zhang, S.; Wang, H. Chem. Sci. 2024, 15, 1077.
[14]
(a) Feng, X.; Wu, J.; Enkelmann, V.; Müllen, K. Org. Lett. 2006, 8, 1145.
[14]
(b) Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Müllen, K. Angew. Chem., nt. Ed. 2007, 46, 3033.
[14]
(c) Liu, Y.; Marszalek, T.; Müllen, K.; Pisula, W.; Feng, X. Chem.- Asian J. 2016, 11, 2107.
[15]
Liu, J.; Jiang, L.; Chang, H.; Liu, H.; Cao, X.-Y.; Zou, Y.; Hu, Y. Chem. Commun. 2022, 58, 13087.
[16]
(a) Chen, F.; Hong, Y. S.; Shimizu, S.; Kim, D.; Tanaka, T.; Osuka, A. Angew. Chem., nt. Ed. 2015, 54, 10639.
[16]
(b) Chen, F.; Hong, Y. S.; Kim, D.; Tanaka, T.; Osuka, A. ChemPlusChem 2017, 82, 1048.
[16]
(c) Matsuo, Y.; Chen, F.; Kise, K.; Tanaka, T.; Osuka, A. Chem. Sci. 2019, 10, 11006.
[17]
Zhou, F.; Huang, Z.; Huang, Z.; Cheng, R.; Yang, Y.; You, J. Org. Lett. 2021, 23, 4559.
文章导航

/