综述与进展

廉价金属配合物应用于均相催化酯加氢制醇的研究进展

  • 方霄龙 ,
  • 张钰 ,
  • 王韬 ,
  • 李斌 ,
  • 段宁 ,
  • 张峰君
展开
  • a 安徽建筑大学 安徽省先进建筑材料工程实验室 功能分子设计与界面过程重点实验室 合肥 230601
    b 湖南师范大学化学化工学院 光能转换材料湖南省高校重点实验室 长沙 410081

收稿日期: 2024-03-19

  修回日期: 2024-05-07

  网络出版日期: 2024-05-30

基金资助

国家自然科学基金(21802010); 安徽省自然科学基金(2308085MB49); 安徽省优秀青年基金(2023AH030038); 安徽省优秀青年基金(gxyq2022027); 湖南省教育厅重点项目(23A0089); 湖南师范大学测试基金(23CSY016)

Advances in Homogeneous Hydrogenation of Esters to Alcohols by Non-noble Metal Complexes

  • Xiaolong Fang ,
  • Yu Zhang ,
  • Tao Wang ,
  • Bin Li ,
  • Ning Duan ,
  • Fengjun Zhang
Expand
  • a Key Laboratory of Functional Molecule Design and Interface Process, Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601
    b Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081
*Corresponding author. E-mail:

Received date: 2024-03-19

  Revised date: 2024-05-07

  Online published: 2024-05-30

Supported by

National Natural Science Foundation of China(21802010); Anhui Provincial Natural Science Foundation(2308085MB49); Anhui Provincial Fund for Outstanding Young Scholars(2023AH030038); Anhui Provincial Fund for Outstanding Young Scholars(gxyq2022027); Key Program of Hunan Education Committee(23A0089); Measurement Funding of Hunan Normal University(23CSY016)

摘要

酯类分子的催化加氢还原是一种绿色、可持续和原子经济的制备醇类化合物的方法. 近20年来, Ru(II)、Ir(III)、Os(II)等贵金属配合物应用于均相催化酯加氢制醇的研究取得了显著的进展, 将贵金属替代为储量丰富且环境友好的廉价金属已经成为当下的研究热点. 总结了近年来Fe(II)、Co(II)、Mn(I)等廉价金属配合物应用于均相催化酯加氢制醇的研究进展, 围绕配合物结构与性能的关联以及催化加氢反应机理, 探讨了影响配合物性能的关键因素, 为进一步设计开发性能优异的廉价金属配合物催化剂提供参考.

本文引用格式

方霄龙 , 张钰 , 王韬 , 李斌 , 段宁 , 张峰君 . 廉价金属配合物应用于均相催化酯加氢制醇的研究进展[J]. 有机化学, 2024 , 44(11) : 3335 -3344 . DOI: 10.6023/cjoc202403024

Abstract

Catalytic hydrogenation of esters to alcohols is a green, sustainable, and atom-economic methodology for alcohol perparation. In the last two decades, the application of noble metal complexes (Ru(II), Ir(III), Os(II), etc.) in homogeneous catalytic hydrogenation of esters to alcohols has achieved significant progress. Replacing noble metals with abundant and environmentally friendly, non-noble metals has been becoming a hot spot. The progress in recent years on the homogeneous catalytic hydrogenation of esters to alcohols is summarized based on non-noble metal complexes including Fe(II), Co(II), and Mn(I). The relationship between complex structure and performance, as well as the catalytic hydrogenation reaction mechanism is detailed discussed to find out the key factors affecting the performance of the complexes, which provides new ideas for further design and development of excellent non-noble metal catalysts.

参考文献

[1]
(a) Dub P. A.; Ikariya T. ACS Catal. 2012, 2, 1718.
[1]
(b) Clarke M. L. Catal. Sci. Technol. 2012, 2, 2418.
[1]
(c) Li W.; Xie J.-H.; Yuan M. L.; Zhou Q. L. Green. Chem. 2014, 16, 4081.
[1]
(d) Gu X.; Li X.; Xie J.; Zhou Q. Acta Chim. Sinica 2019, 77, 598 (in Chinese).
[1]
(顾雪松, 李校根, 谢建华, 周其林, 化学学报, 2019, 77, 598.)
[2]
Ohkuma T.; Ooka H.; Ikariya T.; Noyori R. J. Am. Chem. Soc. 1995, 117, 10417.
[3]
(a) Noyori R.; Ohkuma T. Angew. Chem., Int. Ed. 2001, 40, 40.
[3]
(b) Noyori R. Angew. Chem., Int. Ed. 2002, 41, 2008.
[3]
(c) Sandoval C. A.; Ohkuma T.; Mu?iz K.; Noyori R. J. Am. Chem. Soc. 2003, 125, 13490.
[3]
(d) Zhao B.; Han Z.; Ding K. Angew. Chem., Int. Ed. 2013, 52, 4744.
[3]
(e) Werkmeister S.; Junge K.; Beller M. Org. Process Res. Dev. 2014, 18, 289.
[4]
Zhang J.; Leitus G.; Ben-David Y.; Milstein D. Angew. Chem., Int. Ed. 2006, 45, 1113.
[5]
Saudan L. A.; Saudan C. M.; Debieux C.; Wyss P. Angew. Chem., Int. Ed. 2007, 46, 7473.
[6]
Kuriyama W.; Matsumoto T.; Ogata O.; Ino Y.; Aoki K.; Tanaka S.; Ishida K.; Kobayashi T.; Sayo N.; Saito T. Org. Process Res. Dev. 2012, 16, 166.
[7]
(a) Sun Y.; Koehler C.; Tan R.; Annibale V. T.; Song D. Chem. Commun. 2011, 47, 8349.
[7]
(b) Spasyuk D.; Gusev D. G. Organometallics 2012, 31, 5239.
[7]
(c) Spasyuk D.; Smith S.; Gusev D. G. Angew. Chem., Int. Ed. 2012, 51, 2772.
[7]
(d) Yue H.; Zhao Y.; Ma X.; Gong J. Chem. Soc. Rev. 2012, 41, 4218.
[7]
(e) Chen T.; Li H.; Qu S.; Zheng B.; He L.; Lai Z.; Wang Z. X.; Huang K. W. Organometallics 2014, 33, 4152.
[7]
(f) Spasyuk D.; Vicent C.; Gusev D. G. J. Am. Chem. Soc. 2015, 137, 3743.
[7]
(g) Tan X.; Wang Y.; Liu Y.; Wang F.; Shi L.; Lee K.-H.; Lin Z.; Lv H.; Zhang X. Org. Lett. 2015, 17, 454.
[7]
(h) Wang F.; Tan X.; Lv H.; Zhang X. Chem.-Asian J. 2016, 11, 2103.
[8]
(a) Clarke Z. E.; Maragh P. T.; Dasgupta T. P.; Gusev D. G.; Lough A. J.; Abdur-Rashid K. Organometallics 2006, 25, 4113.
[8]
(b) Bertoli M.; Choualeb A.; Lough A. J.; Moore B.; Spasyuk D.; Gusev D. G. Organometallics 2011, 30, 3479.
[8]
(c) Acosta-Ramirez A.; Bertoli M.; Gusev D. G.; Schlaf M. Green Chem. 2012, 14, 1178.
[8]
(d) Otsuka T.; Ishii A.; Dub P. A.; Ikariya T. J. Am. Chem. Soc. 2013, 135, 9600.
[8]
(e) Junge K.; Wendt B.; Jiao H.; Beller M. ChemCatChem 2014, 6, 2810.
[8]
(f) Ogata O.; Nakayama Y.; Nara H.; Fujiwhara M.; Kayaki Y. Org. Lett. 2016, 18, 3894.
[9]
Werkmeister S.; Junge K.; Wendt B.; Alberico E.; Jiao H.; Baumann W.; Junge H.; Gallou F.; Beller M. Angew. Chem., Int. Ed. 2014, 53, 8722.
[10]
(a) Chakraborty S.; Dai H.; Bhattacharya P.; Fairweather N. T.; Gibson M. S.; Krause J. A.; Guan H. J. Am. Chem. Soc. 2014, 136, 7869.
[10]
(b) Qu S.; Dai H.; Dang Y.; Song C.; Wang Z. X.; Guan H. ACS Catal. 2014, 4, 4377.
[11]
Elangovan S.; Wendt B.; Topf C.; Bachmann S.; Scalone M.; Spannenberg A.; Jiao H.; Baumann W.; Junge K.; Beller M. Adv. Synth. Catal. 2016, 358, 820.
[12]
Elangovan S.; Garbe M.; Jiao H.; Spannenberg A.; Junge K.; Beller M. Angew. Chem., Int. Ed. 2016, 55, 15364.
[13]
Yuwen J.; Chakraborty S.; Brennessel W. W.; Jones W. D. ACS Catal. 2017, 7, 3735.
[14]
John J. M.; Takebayashi S.; Dabral N.; Miskolzie M.; Bergens S. H. J. Am. Chem. Soc. 2013, 135, 8578.
[15]
Junge K.; Wendt B.; Cingolani A.; Spannenberg A.; Wei Z.; Jiao H.; Beller M. Chem.-Eur. J. 2018, 24, 1046.
[16]
(a) Zhang G.; Hanson S. K. Org. Lett. 2013, 15, 650.
[16]
(b) R?sler S.; Ertl M.; Irrgang T.; Kempe R. Angew. Chem., Int. Ed. 2015, 54, 15046.
[16]
(c) Zhang G.; Yin Z.; Zheng S. Org. Lett. 2016, 18, 300.
[16]
(d) Mastalir M.; Tomsu G.; Pittenauer E.; Allmaier G.; Kirchner K. Org. Lett. 2016, 18, 3462.
[17]
Zhong R.; Wei Z.; Zhang W.; Liu S.; Liu Q. Chem 2019, 5, 1552.
[18]
Yang W.; Chernyshov I. Y.; van Schendel R. K.; Weber M.; Müller C.; Filonenko G. A.; Pidko E. A. Nat. Commun. 2021, 12, 12.
[19]
Yang W.; Kalavalapalli T. Y.; Krieger A. M.; Khvorost T. A.; Chernyshov I. Y.; Weber M.; Uslamin E. A.; Pidko E. A.; Filonenko G. A. J. Am. Chem. Soc. 2022, 144, 8129.
[20]
Wei Z.; Li H.; Wang Y.; Liu Q. Angew. Chem., Int. Ed. 2023, 62, e202301042.
[21]
(a) Gunanathan C.; Ben-David Y.; Milstein D. Science 2007, 317, 790.
[21]
(b) Gnanaprakasam B.; Zhang J.; Milstein D. Angew. Chem., Int. Ed. 2010, 49, 1468.
[21]
(c) Gunanathan C.; Gnanaprakasam B.; Iron M. A.; Shimon L. J.; Milstein D. J. Am. Chem. Soc. 2010, 132, 14763.
[21]
(d) Balaraman E.; Gunanathan C.; Zhang J.; Shimon L. J.; Milstein D. Nat. Chem. 2011, 3, 609.
[22]
Zell T.; Ben‐David Y.; Milstein D. Angew. Chem., Int. Ed. 2014, 53, 4685.
[23]
Srimani D.; Mukherjee A.; Goldberg A. F.; Leitus G.; Diskin‐ Posner Y.; Shimon L. J.; Ben David Y.; Milstein D. Angew. Chem., Int. Ed. 2015, 54, 12357.
[24]
Espinosa‐Jalapa N. A.; Nerush A.; Shimon L. J.; Leitus G.; Avram L.; Ben‐David Y.; Milstein D. Chem.-Eur. J. 2017, 23, 5934.
[25]
(a) Widegren M. B.; Harkness G. J.; Slawin A. M.; Cordes D. B.; Clarke M. L. Angew. Chem., Int. Ed. 2017, 56, 5825.
[25]
(b) Widegren M. B.; Clarke M. L. Org. Lett. 2018, 20, 2654.
[26]
Li X. G.; Li F.; Xu Y.; Xiao L. J.; Xie J. H.; Zhou Q. L. Adv. Synth. Catal. 2022, 364, 744.
[27]
Zubar V.; Lichtenberger N.; Schelwies M.; Oeser T.; Hashmi A. S. K.; Schaub T. ChemCatChem 2022, 14, e202101443.
[28]
Teunissen H. T.; Elsevier C. J. Chem. Commun. 1997, 667.
[29]
(a) Hanton M. J.; Tin S.; Boardman B. J.; Miller P. J. Mol. Catal. A: Chem. 2011, 346, 70.
[29]
(b) Geilen F. M.; Engendahl B.; Ho?lscher M.; Klankermayer J.; Leitner W. J. Am. Chem. Soc. 2011, 133, 14349.
[29]
(c) Wesselbaum S.; Vom Stein T.; Klankermayer J.; Leitner W. Angew. Chem., Int. Ed. 2012, 51, 7499.
[29]
(d) Vom Stein T.; Meuresch M.; Limper D.; Schmitz M.; Ho?lscher M.; Coetzee J.; Cole-Hamilton D. J.; Klankermayer J. R.; Leitner W. J. Am. Chem. Soc. 2014, 136, 13217.
[30]
Korstanje T. J.; van der Vlugt J. I.; Elsevier C. J.; de Bruin B. Science 2015, 350, 298.
[31]
(a) Takebayashi S.; Bergens S. H. Organometallics 2009, 28, 2349.
[31]
(b) Kuriyama W.; Ino Y.; Ogata O.; Sayo N.; Saito T. Adv. Synth. Catal. 2010, 352, 92.
[31]
(c) Stempfle F.; Quinzler D.; Heckler I.; Mecking S. Macromolecules 2011, 44, 4159.
[31]
(d) Furst M. R.; Le Goff R.; Quinzler D.; Mecking S.; Botting C. H.; Cole-Hamilton D. J. Green Chem. 2012, 14, 472.
[31]
(e) Fang X.; Zhang C.; Chen J.; Zhu H.; Yuan Y. RSC Adv. 2016, 6, 45512.
[31]
(f) Fang X.; Li B.; Zheng J.; Wang X.; Zhu H.; Yuan Y. Dalton Trans. 2019, 48, 2290.
[31]
(g) Fang X. L.; Li B.; Jin J.; Duan N. Chin. J. Org. Chem. 2022, 42, 1407 (in Chinese).
[31]
(方霄龙, 李斌, 金杰, 段宁, 有机化学, 2022, 42, 1407.)
[32]
Van Putten R.; Uslamin E. A.; Garbe M.; Liu C.; Gonzalez‐de‐Castro A.; Lutz M.; Junge K.; Hensen E. J.; Beller M.; Lefort L.; Pidko E. A. Angew. Chem., Int. Ed. 2017, 56, 7531.
[33]
(a) Hamilton R. J.; Bergens S. H. J. Am. Chem. Soc. 2006, 128, 13700.
[33]
(b) Fang X.; Duan N.; Zhang M.; Zhang C.; Liu R.; Zhu H. Chin. J. Org. Chem. 2019, 39, 1450 (in Chinese).
[33]
(方霄龙, 段宁, 章敏, 张春燕, 刘睿, 朱红平, 有机化学, 2019, 39, 1450.)
[34]
(a) Langer R.; Iron M. A.; Konstantinovski L.; Diskin‐Posner Y.; Leitus G.; Ben‐David Y.; Milstein D. Chem.-Eur. J. 2012, 18, 7196.
[34]
(b) Hoyt J. M.; Shevlin M.; Margulieux G. W.; Krska S. W.; Tudge M. T.; Chirik P. J. Organometallics 2014, 33, 5781.
[34]
(c) Lagaditis P. O.; Sues P. E.; Sonnenberg J. F.; Wan K. Y.; Lough A. J.; Morris R. H. J. Am. Chem. Soc. 2014, 136, 1367.
[34]
(d) Thai T. T.; Mérel D. S.; Poater A.; Gaillard S.; Renaud J. L. Chem.-Eur. J. 2015, 21, 7066.
[34]
(e) Gajewski P.; Renom‐Carrasco M.; Facchini S. V.; Pignataro L.; Lefort L.; de Vries J. G.; Ferraccioli R.; Piarulli U.; Gennari C. Eur. J. Org. Chem. 2015, 2015, 5526.
[34]
(f) Rosas-Hernández A.; Alsabeh P. G.; Barsch E.; Junge H.; Ludwig R.; Beller M. Chem. Commun. 2016, 52, 8393.
[34]
(g) Hodgkinson R.; Del Grosso A.; Clarkson G.; Wills M. Dalton Trans. 2016, 45, 3992.
[35]
Gajewski P.; Gonzalez‐de‐Castro A.; Renom‐Carrasco M.; Piarulli U.; Gennari C.; de Vries J. G.; Lefort L.; Pignataro L. ChemCatChem 2016, 8, 3431.
[36]
Azouzi K.; Pedussaut L.; Pointis R.; Bonfiglio A.; Kumari Riddhi R.; Duhayon C.; Bastin S.; Sortais J. B. Organometallics 2023, 42, 1832.
文章导航

/