综述与进展

色酮类化合物的制备及其在有机合成中的应用进展

  • 黎忠昊 ,
  • 曾玉 ,
  • 曾咏 ,
  • 徐文锦 ,
  • 曹西颖 ,
  • 郭玉婷 ,
  • 沈晴 ,
  • 汪朝阳
展开
  • 华南师范大学化学学院 广州市生物医学分析化学重点实验室 GDMPA手性药物过程控制与质量评价重点实验室 教育部环境理论化学重点实验室 广州 510006

收稿日期: 2024-03-19

  修回日期: 2024-05-03

  网络出版日期: 2024-05-30

基金资助

广东省基础与应用基础研究基金(2021A1515012342); 华南师范大学课外科研(23HXKB06); 华南师范大学课外科研(23HXKB01)

Progresses in the Preparation of Chromone Compounds and Their Applications in Organic Synthesis

  • Zhonghao Li ,
  • Yu Zeng ,
  • Yong Zeng ,
  • Wenjin Xu ,
  • Xiying Cao ,
  • Yuting Guo ,
  • Qing Shen ,
  • Zhaoyang Wang
Expand
  • Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006
*Corresponding authors. E-mail:;

Received date: 2024-03-19

  Revised date: 2024-05-03

  Online published: 2024-05-30

Supported by

Guangdong Basic and Applied Basic Research Foundation(2021A1515012342); Extracurricular Scientific Research Project of South China Normal University(23HXKB06); Extracurricular Scientific Research Project of South China Normal University(23HXKB01)

摘要

色酮是黄酮类化合物的核心骨架, 其衍生物具有不同的应用价值. 同时, 色酮含有的α,β-不饱和酮结构使其能够发生取代、环化、不对称加成等反应, 促进多种功能化的色酮类似物或其他骨架分子的产生. 因此, 除色酮天然产物外, 色酮类化合物的制备及其作为合成子在有机合成中的应用研究同样备受关注. 总结了色酮类化合物的制备方法, 并以反应类型和反应区域作为依据综述了近年来重要色酮类合成子在有机合成中的应用.

本文引用格式

黎忠昊 , 曾玉 , 曾咏 , 徐文锦 , 曹西颖 , 郭玉婷 , 沈晴 , 汪朝阳 . 色酮类化合物的制备及其在有机合成中的应用进展[J]. 有机化学, 2024 , 44(11) : 3345 -3356 . DOI: 10.6023/cjoc202403025

Abstract

Chromone is the core backbone of flavonoids and its derivatives have different applications. Meanwhile, the α,β-unsaturated ketone structure contained in chromones enables them to undergo reactions such as substitution, cyclization, and asymmetric addition, which promotes the generation of a variety of functionalized chromone analogues or other backbone molecules. Therefore, in addition to chromone natural products, the preparation of chromones and their use as synthons in organic synthesis applications are also of great interest. The preparation methods of chromones are summarized and the recent applications of important chromone synthons in organic synthesis are reviewed on the basis of reaction types and reaction regions.

参考文献

[1]
(a) Gaspar A.; Matos M. J.; Garrido J.; Uriarte E.; Borges F. Chem. Rev. 2014, 114, 4960.
[1]
(b) Reis J.; Gaspar A.; Milhazes N.; Borges F. J. Med. Chem. 2017, 60, 7941.
[1]
(c) Liu W. X.; Feng Y.; Yu S. H.; Fan Z. Q.; Li X. L.; Li J. Y.; Yin H. F. Int. J. Mol. Sci. 2021, 22, 12824.
[2]
(a) Singh M.; Kaur M.; Silakari U. Eur. J. Med. Chem. 2014, 84, 206.
[2]
(b) Silva C. F. M.; Pinto D.; Silva A. M. S. ChemMedChem 2016, 11, 2252.
[2]
(c) Kim H.-S.; Yoon Y.-M.; Meang M. K.; Park Y. E.; Lee J. Y.; Lee T. H.; Lee J. E.; Kim I.-H.; Youn B.-S. EBioMedicine 2019, 39, 484.
[3]
Fan M. Y.; Yang W.; Liu L.; Peng Z. Y.; He Y.; Wang G. C. Bioorg. Chem. 2023, 132, 106384.
[4]
Tian S. H.; Luo T.; Zhu Y. P.; Wan J.-P. Chin. Chem. Lett. 2020, 31, 3073.
[5]
Ma Y. J.; Li J.; Ye J. X.; Liu D. L.; Zhang W. B. Chem. Commun. 2018, 54, 13571.
[6]
Liu H.-Y.; Zhang J.-R.; Huang G.-B.; Zhou Y.-H.; Chen Y.-Y.; Xu Y.-L. Adv. Synth. Catal. 2021, 363, 1656.
[7]
Guo D.-G.; Wang H.-J.; Zhou Y.; Liu X.-L. Org. Biomol. Chem. 2022, 20, 4681.
[8]
Safrygin A. V.; Sosnovskikh V. Y. Russ. Chem. Rev. 2017, 86, 318.
[9]
Zhang M.; Gong Y.; Zhou W.; Zhou Y.; Liu X.-L. Org. Chem. Front. 2021, 8, 3968.
[10]
Benny A. T.; Radhakrishnan E. K. RSC Adv. 2022, 12, 3343.
[11]
Han J.; Wang T.; Feng S. Q.; Li C. C.; Zhang Z. T. Green Chem. 2016, 18, 4092.
[12]
(a) Rafique J.; Saba S.; Schneider A. R.; Franco M. S.; Silva S. M.; Braga A. L. ACS Omega 2017, 2, 2280.
[12]
(b) Das B.; Chakraborty N.; Dhara H. N.; Bhattacharyya P.; Patel B. K. J. Org. Chem. 2024, 89, 1331.
[13]
Fu L. Q.; Xu Z. R.; Wan J.-P.; Liu Y. Y. Org. Lett. 2020, 22, 9518.
[14]
Yu Q.; Liu Y. Y.; Wan J.-P. Org. Chem. Front. 2020, 7, 2770.
[15]
Mkrtchyan S.; Purohit V. B.; Khutsishvili S.; Nociarova J.; Yar M.; Mahmood T.; Ayub K.; Budzak S.; Skorsepa M.; Iaroshenko V. O. Adv. Synth. Catal. 2023, 365, 2026.
[16]
Elagamy A.; Shaw R.; Shah C.; Pratap R. J. Org. Chem. 2021, 86, 9478.
[17]
Macklin T. K.; Panteleev J.; Snieckus V. Angew. Chem.,Int. Ed. 2008, 47, 2097.
[18]
Jung C.; Li S. Y.; Lee K.; Viji M.; Lee H.; Hyun S.; Lee K.; Kang Y. K.; Chaudhary C. L.; Jung J.-K. Green Chem. 2022, 24, 2376.
[19]
Zhao J.; Zhao Y. F.; Fu H. Angew. Chem.,Int. Ed. 2011, 50, 3769.
[20]
Duan J. X.; Xiong Z. L.; Zhou Y. Q.; Yao W. J.; Li X. Y.; Zhang M.; Wang Z. Org. Lett. 2021, 23, 8007.
[21]
Zhu F. X.; Li Y. H.; Wang Z. C.; Wu X.-F. Catal. Sci. Technol. 2016, 6, 2905.
[22]
Liu J.; Ba D.; Chen Y. H.; Wen S.; Cheng G. L. Chem. Commun. 2020, 56, 4078.
[23]
Yue Y. X.; Peng J. S.; Wang D. Q.; Bian Y. Y.; Sun P.; Chen C. X. J. Org. Chem. 2017, 82, 5481.
[24]
Rao M. L. N.; Ramakrishna B. S. Org. Biomol. Chem. 2020, 18, 1402.
[25]
Jin C.; Zhang X.; Sun B.; Yan Z. Y.; Xu T. W. Synlett 2019, 30, 1585.
[26]
Zhang Y. F.; Duan W.-D.; Chen J. J.; Hu Y. H. J. Org. Chem. 2019, 84, 4467.
[27]
Zhang Y. L.; Xu Z. W.; Zhan L. L.; Gao Y.; Zheng B.; Zhou Y.; Sheng Y. G.; Liang G.; Song Z. Q. Bioorg. Chem. 2022, 128, 106049.
[28]
Klier L.; Ziegler D. S.; Rahimofft R.; Mosrin M.; Knochel P. Org. Process Res. Dev. 2017, 21, 660.
[29]
Xu Z. B.; Gao Y. M.; Wang S. S.; Zhang Q. L.; Zhang L. Z.; Shen L. J. Org. Chem. 2022, 87, 3461.
[30]
Liu J. P.; Yu D.; Yang Y.; You H. C.; Sun M. Z.; Wang Y. X.; Shen X.; Liu Z.-Q. Org. Lett. 2020, 22, 4844.
[31]
Zhu J.; Xu B. J.; Yu J. J.; Ren Y. K.; Wang J.; Xie P.; Pittman C. U.; Zhou A. H. Org. Biomol. Chem. 2018, 16, 5999.
[32]
Wang B.-W.; Jiang K.; Li J.-X.; Luo S.-H.; Wang Z.-Y.; Jiang H.-F. Angew. Chem.,Int. Ed. 2020, 59, 2338.
[33]
Ding Y. C.; Wu W.; Zhao W. N.; Li Y. W.; Xie P.; Huang Y. Q.; Liu Y.; Zhou A. H. Org. Biomol. Chem. 2016, 14, 1428.
[34]
Tang Q. J.; Bian Z. G.; Wu W.; Wang J.; Xie P.; Pittman C. U.; Zhou A. H. J. Org. Chem. 2017, 82, 10617.
[35]
Li J. P.; Yu Y.; Xu Y. N.; Li F. X.; Liu Y. Q.; Sun Y. F.; Wang C. Y.; Chen P.; Wang L. Green Chem. Lett. Rev. 2022, 15, 689.
[36]
Ghosh T.; Saha S.; Bandyopadhya C. Synthesis 2005, 11, 1845.
[37]
Paula S.; Bhattacharya A. K. Org. Biomol. Chem. 2018, 16, 444.
[38]
Kovalevsky R. A.; Vasechkin K. V.; Kucherenko A. S.; Zlotin S. G. Adv. Synth. Catal. 2023, 365, 3162.
[39]
Mkrtchyan S.; Iaroshenko V. O. J. Org. Chem. 2020, 85, 7152.
[40]
Zhu W.-Q.; Fang Y.-C.; Han W.-Y.; Li F.; Yang M.-G.; Chen Y.-Z. Org. Chem. Front. 2021, 8, 3082.
[41]
Chniti S.; Pongracz P.; Kollar L.; Benyei A.; Dornyei A.; Takacs A. J. Org. Chem. 2024, 89, 1175
[42]
Tong Q.; Xiu R.-F.; Chen J.-H.; Zhang Y.; Cui B.-D.; Wan N.-W.; Chen Y.-Z.; Han W.-Y. ACS Catal. 2023, 13, 12692.
[43]
Yerrabelly J. R.; Bathini P. K.; Yerrabelly H.; Vadapalli K. New J. Chem. 2021, 45, 4705.
[44]
Puzzovio P. G.; Brueggemann T. R.; Pahima H.; Mankuta D.; Levy B. D.; Levi-Schaffer F. Pharmacol. Res. 2022, 178, 106172.
[45]
Ma Y. Y.; Gao Q. W.; Zhou L.; Liu S. S.; Cheng H. G.; Zhou Q. H. Chin. J. Chem. 2022, 40, 675.
[46]
Yang Q.; He Y.; Wang T.; Zeng L. Y.; Zhang Z. T. Mol. Diversity. 2016, 20, 9.
[47]
Du Y.-Z.; Wang Y.-J.; Zhao Q.-Y.; Zhao L.-M. Eur. J. Org. Chem. 2021, 2021, 2411.
[48]
Duan B. B.; Wu Y.; Gao Y.; Ying L. K.; Tang J. L.; Hu S. Y.; Zhao Q. H.; Song Z. Q. Chem. Commun. 2022, 58, 11555.
[49]
Albuquerque H. M. T.; Santos C. M. M.; Cavaleiro J. A. S.; Silva A. M. S. New J. Chem. 2018, 42, 4251.
[50]
Duan W.-D.; Zhang Y.-F.; Hu Y. H. ACS Omega, 2020, 5, 13454.
[51]
He C.; Han W.-Y.; Cui B.-D.; Wan N.-W.; Chen Y.-Z. Adv. Synth. Catal. 2020, 362, 3655.
[52]
Fang Y. C.; Chen J. H.; Xiu R. F.; Zhang L. R.; Zheng F. H.; Chen Y. Z.; Gao Z. W.; Han W. Y. Org. Chem. Front. 2023, 10, 3752.
[53]
Zhu W. Q.; Zhang Z. W.; Han W. Y.; Fang Y. C.; Yang P.; Li L. Q.; Chen Y. Z. Org. Chem. Front. 2021, 8, 3413.
[54]
Yang S.-Y.; Han W.-Y.; He C.; Cui B.-D.; Wan N.-W.; Chen Y.-Z. Org. Lett. 2019, 21, 8857.
[55]
Li M.-Z.; Tong Q.; Han W.-Y.; Yang S.-Y.; Cui B.-D.; Wan N.-W.; Chen Y.-Z. Org. Biomol. Chem. 2020, 18, 1112.
[56]
He C.; Chen X.-L.; Zhuang S.-Y.; Wu Y.-D.; Tang B.-C.; Wu A.-X. Adv. Synth. Catal. 2021, 363, 3476.
[57]
Li F.; Li H.-M.; Xiu R.-F.; Zhang J.-K.; Cui B.-D.; Wan N.-W.; Chen Y.-Z.; Han W.-Y. Org. Lett. 2022, 24, 9392.
[58]
Tang J. H.; Yang Z. G.; Song Y. F.; Chen Z. K.; Wu X.-F. Mol. Catal. 2022, 524, 112320.
[59]
Murugesh N.; Karvembu R.; Vedachalam S. Org. Biomol. Chem. 2020, 18, 7884.
[60]
Tong P.; Sun Z.; Wang S. T.; Zhang Y.; Li Y. J. Org. Chem. 2019, 84, 13967.
[61]
Li H. W.; Xin J. H.; Xue Y. H.; Wang C. D. J. Org. Chem. 2022, 87, 11857.
[62]
Zhang D.; Luo N. L.; Gan J. B.; Wan X. Y.; Wang C. D. J. Org. Chem. 2021, 86, 9218.
[63]
Luo N. L.; Wang S.; Zhang Y.; Xin J. H.; Wang C. D. J. Org. Chem. 2020, 85, 14219.
[64]
Zhou W. Y.; Gan J. B.; Li H. W.; Wang C. D. J. Org. Chem. 2023, 88, 14767.
[65]
Ji K.; Johnson R. P.; Mcneely J.; Al Faruk M.; Porco J. A., Jr. J. Am. Chem. Soc. 2024, 146, 4892
[66]
Guan Y.; Attard J. W.; Mattson A. E. Chem.-Eur. J. 2020, 26, 1742.
[67]
(a) Li S. Y.; Zhang L. F.; He Q.; Zhang X. F.; Yang C. H. Org. Biomol. Chem. 2021, 19, 5348.
[67]
(b) Lei J.; Ding Y.; Zhou H.-Y.; Gao X.-Y.; Cao Y.-H.; Tang D.-Y.; Li H.-Y.; Xu Z.-G.; Chen Z.-Z. Green Chem. 2022, 24, 5755.
[68]
Yuan J. Q.; He Q.; Song S. S.; Zhang X. F.; Miao Z. H.; Yang C. H. Molecules 2019, 24, 3017.
[69]
Moutayakine A.; Marques C.; López O.; Bagetta D.; Leitzbach L.; Hagenow S.; Carreiro E. P.; Stark H.; Alcaro S.; Fernández-Bola?os J. G.; Burke A. J. Bioorg. Med. Chem. 2022, 68, 116807.
[70]
(a) Chen J. J.; Gao B. C.; Feng X. Q.; Meng W.; Du H. F. Org. Lett. 2021, 23, 8565.
[70]
(b) Nie Z.; Liu S.; Wang T. L.; Shen Z. H.; Nie H. F.; Xi J. Y.; Zhang D. X.; Zheng X. H.; Zhang S. Y.; Yao L. Chem. Commun. 2022, 58, 5837.
[71]
(a) He B.; Phansavath P.; Ratovelomanana-Vidal V. Org. Lett. 2019, 21, 3276.
[71]
(b) Yang J.; Lai J. X.; Kong W. L.; Li S. K. J. Agric. Food Chem. 2022, 70, 3409.
[72]
Xie C. C.; Guo Q. L.; Wu X. X.; Ye W. P.; Hou G. H. J. Org. Chem. 2023, 88, 15726.
[73]
Xu Y. N.; Luo Y. C.; Ye J. X.; Deng Y.; Liu D. L.; Zhang W. B. J. Am. Chem. Soc. 2022, 144, 20078.
[74]
(a) Baek D.; Ryu H.; Ryu J. Y.; Lee J.; Stoltz B. M.; Hong S. Chem. Sci. 2020, 11, 4602.
[74]
(b) Lei J.; Li Y.; He L.-J.; Luo Y.-F.; Tang D.-Y.; Yan W.; Lin H.-K.; Li H.-Y.; Chen Z.-Z.; Xu Z.-G. Org. Chem. Front. 2020, 7, 987.
[75]
Meng L.; Ngai K. Y.; Chang X. Y.; Lin Z. Y.; Wang J. Org. Lett. 2020, 22, 1155.
[76]
Deratt L. G.; Pappoppula M.; Aponick A. Angew. Chem.,Int. Ed. 2019, 58, 8416.
[77]
Wang Q. T.; Feng X. Q.; Meng W.; Du H. F. Org. Biomol. Chem. 2019, 17, 8354.
[78]
Mo Y. H.; Chen Q. Y.; Li J. Z.; Ye D.; Zhou Y. Q.; Dong S. X.; Liu X. H.; Feng X. M. ACS Catal. 2022, 13, 877.
[79]
Wang X.-Y.; Yang M.; Zhou Y.; Zhou J.; Hao Y.-J. Org. Biomol. Chem. 2023, 21, 1033.
[80]
Cao K. N.; Li C. Y.; Tian D.; Zhao X. W.; Yin Y. L.; Jiang Z. Y. Org. Lett. 2022, 24, 4788.
[81]
Yu J.-T.; Li Y. T.; Chen R. Z.; Yang Z. X.; Pan C. D. Org. Biomol. Chem. 2021, 19, 4520.
[82]
(a) Zhou Y.-J.; Fang Y.-G.; Yang K.; Yu S.-W.; Chen Z.-J.; Wang B.-C.; Zhan H.-Y.; Wang Z.-Y. Asian J. Org. Chem. 2023, 12, e202300038.
[82]
(b) Yang K.; Yang J.-Q.; Luo S.-H.; Mei W.-J.; Lin J.-Y.; Zhan J.-Q.; Wang Z.-Y. Bioorg. Chem. 2021, 107, 104518.
[82]
(c) Wang N.; Lin J.-Y.; Luo S.-H.; Zhou Y.-J.; Yang K.; Chen R.-H.; Yang G.-X.; Wang Z.-Y. Amino Acids 2022, 54, 989.
[82]
(d) Yang K.; Chen Z.-X.; Zhou Y.-J.; Chen Q.; Yu S.-W.; Luo S.-H.; Wang Z.-Y. Org. Chem. Front. 2022, 9, 1127.
[83]
Valdomir G.; Tietze L. F. Eur. J. Org. Chem. 2022, 20, e202200201.
[84]
Samanta S.; Cui J.; Noda H.; Watanabe T.; Shibasaki M. J. Org. Chem. 2023, 88, 1177.
[85]
Trost B. M.; Gnanamani E.; Kalnmals C. A.; Hung C. I.; Tracy J. S. J. Am. Chem. Soc. 2019, 141, 1489.
[86]
Cui J.; Kumagai N.; Watanabe T.; Shibasaki M. Chem. Sci. 2020, 11, 7170.
[87]
Lei J.; Li Y.; Xu J.; Tang D.-Y.; Shao J.-W.; Li H.-Y.; Chen Z.-Z.; Xu Z.-G. Green Chem. 2020, 22, 3716.
[88]
Kowalska E.; Dyguda M.; Artelska A.; Albrecht A. J. Org. Chem. 2023, 88, 16589.
[89]
Zhou X.; Zhang B. W.; Wu P.; Xu W.; Wang R. Q.; Li J. B.; Zhai H. B.; Cheng B.; Wang T. M. Org. Lett. 2023, 25, 7512.
[90]
Barlose C. L.; Faghtmann J.; Bitsch R. S.; Gbubele J. D.; Jorgensen K. A. Org. Lett. 2023, 25, 1209.
[91]
Attard J. W.; Noel J. R.; Guan Y.; Mattson A. E. Org. Lett. 2023, 25, 2450.
[92]
(a) Liu X.-L.; Zhou G.; Gong Y.; Yao Z.; Zuo X.; Zhang W.-H.; Zhou Y. Org. Lett. 2019, 21, 2528.
[92]
(b) Zuo X.; Liu X.-L.; Wang J.-X.; Yao Y.-M.; Zhou Y.-Y.; Wei Q.-D.; Gong Y.; Zhou Y. J. Org. Chem. 2019, 84, 6679.
[93]
(a) Liu X.-L.; Gong Y.; Chen S.; Zuo X.; Yao Z.; Zhou Y. Org. Chem. Front. 2019, 6, 1603.
[93]
(b) Liu X.-L.; Wei Q.-D.; Zuo X.; Xu S.-W.; Yao Z.; Wang J.-X.; Zhou Y. Adv. Synth. Catal. 2019, 361, 2836.
[93]
(c) Chang S.-Q.; Zou X.; Gong Y.; He X.-W.; Liu X.-L.; Zhou Y. Chem. Commun. 2019, 55, 14003.
[94]
Zhang M.; Wang J.-X.; Chang S.-Q.; Liu X.-L.; Zuo X.; Zhou Y. Chin. Chem. Lett. 2020, 31, 381.
[95]
Wang S.; Zhang Y.; Liang C.; Zhang Y.; Zhan R.; Huang H. Org. Lett. 2023, 25, 8269.
[96]
Eschenbrenner-Lux V.; Küchler P.; Ziegler S.; Kumar K.; Waldmann H. Angew. Chem.,Int. Ed. 2014, 53, 2134.
[97]
Joshi D. R.; Kim I. J. Org. Chem. 2021, 86, 13175.
[98]
(a) Fang J. M.; Wang T.; Li C. C.; Wang R.; Lei X. Y.; Liang Y.; Zhang Z. T. Org. Lett. 2017, 19, 5984.
[98]
(b) Xiao Q.; Liu J.; Nie J.-H.; Kong L.-B.; Lin J.; Yan S.-J. Org. Chem. Front. 2020, 7, 2035.
[99]
(a) Cao L.; Luo S.-H.; Jiang K.; Hao Z.-F.; Wang B.-W.; Pang C.-M.; Wang Z.-Y. Org. Lett. 2018, 20, 4754.
[99]
(b) Yu S.-W.; Chen Z.-J.; Chen Z.-H.; Chen S.-H.; Yang K.; Xu W.-J.; Wang Z.-Y. Org. Biomol. Chem. 2023, 21, 7776.
[100]
Chen Z.-J.; Yu S.-W.; Zhou Y.-J.; Li H.-Q.; Qiu Q.-W.; Li M.-X.; Wang Z.-Y. Chin. J. Org. Chem. 2023, 43, 3107 (in Chinese).
[100]
(陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳, 有机化学, 2023, 43, 3107.)
[101]
Sultana S.; Maezono S. M. B.; Akhtar M. S.; Shim J.-J.; Wee Y.-J.; Kim S. H.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 751.
[102]
Gim J.; Rubio P. Y. M.; Mohandoss S.; Lee Y. R. J. Org. Chem. 2024, 89, 2538.
[103]
Dai T. Z.; Li Q. Y.; Zhang X. F.; Yang C. H. J. Org. Chem. 2019, 84, 5913.
[104]
Cao X.-Y.; Huang Y.; Chen S.-H.; Yu S.-W.; Chen Z.-J.; Li Z.-H.; Zeng Y.; Chen N.; Cao L.; Wang Z.-Y. iScience 2024, 27, 110024.
[105]
Wang J. G.; Zhu W. P.; Li C. B.; Zhang P. F.; Jiang G. Y.; Niu G. L.; Tang B. Z. Sci. China Chem. 2020, 63, 282.
[106]
Liu Q.; Sun C. Y.; Dai R. L.; Yan C. X.; Zhang Y. T.; Zhu W.-H.; Guo Z. Q. Coord. Chem. Rev. 2024, 503, 215652
[107]
Gao M.-J.; Hua Y.; Xu J.-Q.; Zhang L.-X.; Wang S.; Kang Y.-F. Dyes Pigm. 2022, 197, 109930.
[108]
Meng Q. Y.; Xie B. H.; Yu H. G.; Shen K.; Deng X. P.; Zhou H. B.; Dong C. N. ACS Sensors 2022, 7, 109.
[109]
Guo L. X.; Zhang X. Y.; Wen D. N.; Ding L.; Niu Y.; Li L. H.; Liu W.; Diao H. P.; Feng L. H. Sens. Actuators B 2022, 360, 131656.
[110]
Huang J. S.; Zhang C.; Wang X. Z.; Wei X.; Pu K. Y. Angew. Chem.,Int. Ed. 2023, 62, e202303982.
文章导航

/