研究论文

BF3•OEt2介导2-炔基苯胺的分子内环化反应合成3-硫醚吲哚化合物

  • 高宇珅 ,
  • 高媛媛 ,
  • 张安安 ,
  • 李路 ,
  • 耿巍芝 ,
  • 张凤华 ,
  • 李飞 ,
  • 刘澜涛
展开
  • a 辽宁石油化工大学石油化工学院 辽宁抚顺 113001
    b 商丘师范学院化学化工学院 河南省药物绿色合成工程研究中心 河南商丘 476000
    c 新乡润宇材料有限公司 河南新乡 453000

收稿日期: 2024-03-26

  修回日期: 2024-05-08

  网络出版日期: 2024-05-30

基金资助

河南省自然科学基金(232300421234); 河南省高校重点科研项目(24B150027); 河南省高校重点科研项目(24A530007); 商丘市科技创新领军人才(SQRC202212004); 商丘师范学院(黄河故道区生态环境保护计划)

BF3•OEt2 Mediated Intramolecular Cyclization of 2-Alkynylanilines Approach to 3-Sulfenylindoles

  • Yushen Gao ,
  • Yuanyuan Gao ,
  • An'an Zhang ,
  • Lu Li ,
  • Weizhi Geng ,
  • Fenghua Zhang ,
  • Fei Li ,
  • Lantao Liu
Expand
  • a School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001
    b Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
    c Xinxiang Runyu Material Co. Ltd., Xinxiang, Henan 453000

Received date: 2024-03-26

  Revised date: 2024-05-08

  Online published: 2024-05-30

Supported by

Natural Science Foundation of Henan Province(232300421234); Key Scientific Research Project of Colleges and Universities in Henan Province(24B150027); Key Scientific Research Project of Colleges and Universities in Henan Province(24A530007); Leading Talents in Scientific and Technological Innovation in Shangqiu City(SQRC202212004); Shangqiu Normal University(Program of Ecological Environmental Protection in the Area of Old Course of Yellow River)

摘要

3-硫醚吲哚广泛存在于天然产物、生物活性分子和有机功能材料中. 报道了一种非金属催化条件下BF3•OEt2介导的2-炔基苯胺与N-(芳基硫)琥珀酰亚胺的亲电环化反应, 高效合成了一系列3-硫醚吲哚衍生物. 该方案具有适用范围广、官能团兼容性好、条件温和及操作简便等优点. 此外, 克级反应也证明了该方法具有良好的应用前景.

本文引用格式

高宇珅 , 高媛媛 , 张安安 , 李路 , 耿巍芝 , 张凤华 , 李飞 , 刘澜涛 . BF3•OEt2介导2-炔基苯胺的分子内环化反应合成3-硫醚吲哚化合物[J]. 有机化学, 2024 , 44(9) : 2785 -2795 . DOI: 10.6023/cjoc202403041

Abstract

3-Sulfenylindoles are widely found in natural products, bioactive molecules and organic functional materials. BF3•OEt2 mediated electrophilic cyclization reaction of 2-alkynylaniline with N-(arylthio)succinimide was developed leading to the efficient synthesis of various biologically active 3-sulfenylindoles in moderate to high yields under very mild conditions. This protocol has the advantages of broad scope, functional group diversity, mild conditions and ease of operation. Moreover, gram-scale preparation portends the practical application.

参考文献

[1]
(a) Bingul, M.; Ercan, S.; Boga, M. J. Mol. Struct. 2020, 1213, 10.
[1]
(b) Sarva, S.; Harinath, J. S.; Sthanikam, S. P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S. R. Chin. Chem. Lett. 2016, 27, 16.
[1]
(c) Tu, M. S.; Chen, K. W.; Wu, P.; Zhang, Y. C.; Liu, X. Q.; Shi, F. Org. Chem. Front. 2021, 8, 2643.
[1]
(d) Yamamoto, Y.; Kurazono, M. Bioorg. Med. Chem. Lett. 2007, 17, 1626.
[1]
(e) Zhang, M. Z.; Chen, Q.; Yang, G. F. Eur. J. Med. Chem. 2015, 89, 421.
[1]
(f) Zhang, M. Z.; Jia, C. Y.; Gu, Y. C.; Mulholland, N.; Turner, S.; Beattie, D.; Zhang, W. H.; Yang, G. F.; Gough, J. Eur. J. Med. Chem. 2017, 126, 669.
[2]
(a) Ragno, R.; Artico, M.; De Martino, G.; La Regina, G.; Coluccia, A.; Di Pasquali, A.; Silvestri, R. J. Med. Chem. 2005, 48, 213.
[2]
(b) Ragno, R.; Coluccia, A.; La Regina, G.; De Martino, G.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.
[2]
(c) Silvestri, R.; Artico, M.; De Martino, G. L.; La Regina, G.; Loddo, R.; La Colla, M.; La Colla, P. J. Med. Chem. 2004, 47, 3892.
[2]
(d) Silvestri, R.; De Martino, G.; La Regina, G.; Artico, M.; Massa, S.; Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; La Colla, P. J. Med. Chem. 2003, 46, 2482.
[3]
Hutchinson, J. H.; Riendeau, D.; Brideau, C.; Chan, C.; Delorme, D.; Denis, D.; Falgueyret, J. P.; Fortin, R.; Guay, J.; Hamel, P.; Jones, T. R.; Macdonald, D.; McFarlane, C. S.; Piechuta, H.; Scheigetz, J.; Tagari, P.; Therien, M.; Girard, Y. J. Med. Chem. 1993, 36, 2771.
[4]
Hu, C. Y.; Ma, S. T. MedChemComm 2018, 9, 212.
[5]
(a) La Regina, G.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.
[5]
(b) Wan, Y. C.; Li, Y. H.; Yan, C. X.; Yan, M.; Tang, Z. L. Eur. J. Med. Chem. 2019, 183, 18.
[6]
(a) Benchawan, T.; Maneewong, J.; Saeeng, R. ChemistrySelect 2023, 8, e202301988.
[6]
(b) Ge, X.; Sun, F. L.; Liu, X. M.; Chen, X. Z.; Qian, C.; Zhou, S. D. New J. Chem. 2017, 41, 13175.
[6]
(c) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.
[6]
(d) Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69, 7688.
[6]
(e) Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J.; Praneeth, K. Synthesis 2009, 2009, 1520.
[6]
(f) Silveira, C. C.; Mendes, S. R.; Wolf, L.; Martins, G. M. Tetrahedron Lett. 2010, 51, 2014.
[7]
(a) Bai, F.; Zhang, S.; Wei, L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 371.
[7]
(b) Chen, M.; Huang, Z.-T.; Zheng, Q.-Y. Chem. Commun. 2012, 48, 11686.
[7]
(c) Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.; Wu, Y. Org. Chem. Front. 2019, 6, 116.
[7]
(d) Guo, W.; Tan, W.; Zhao, M. M.; Tao, K. L.; Zheng, L. Y.; Wu, Y. Q.; Chen, D. L.; Fan, X. L. RSC Adv. 2017, 7, 37739.
[7]
(e) He, X.; Song, W.; Liu, X.; Huang, J.; Feng, R.; Zhou, S.; Hong, J.; Ge, X. Green Chem. 2023, 25, 1311.
[7]
(f) Li, W. H.; Wang, H.; Liu, S. P.; Feng, H.; Benassi, E.; Qian, B. Adv. Synth. Catal. 2020, 362, 2666.
[7]
(g) Liu, H. L.; Zhang, R. J.; Han, D. Y.; Feng, Y.; Luo, T. H.; Xu, D. Z. J. Org. Chem. 2023, 88, 10058.
[7]
(h) Menezes, J. R.; Gularte, M. M.; dos Santos, F. C.; Roehrs, J. A.; Azeredo, J. B. Tetrahedron Lett. 2023, 120, 154446.
[7]
(i) Mulina, O. M.; Ilovaisky, A. I.; Terent'ev, A. O. ChemistrySelect 2021, 6, 10369.
[7]
(j) Nandi, G. C.; Priya, V. R. P.; Mercy, A. A. H.; Natarajan, K. Synlett 2023, 34, 279.
[7]
(k) Pandey, A. K.; Chand, S.; Singh, R.; Kumar, S.; Singh, K. N. ACS Omega 2020, 5, 7627.
[7]
(l) Qi, H.; Zhang, T.; Wan, K.; Luo, M. J. Org. Chem. 2016, 81, 4262.
[7]
(m) Rafique, J.; Saba, S.; Franco, M. S.; Bettanin, L.; Schneider, A. R.; Silva, L. T.; Braga, A. L. Chem.-Eur. J. 2018, 24, 4173.
[7]
(n) Raghuvanshi, D. S.; Verma, N. RSC Adv. 2017, 7, 22860.
[7]
(o) Rastogi, S. K.; Singh, R.; Kumar, S.; Mishra, A. K.; Ahirwar, M. B.; Deshmukh, M. M.; Sinha, A. K.; Kumar, R. Org. Biomol. Chem. 2023, 21, 838.
[7]
(p) Shen, Z.; Li, M.; Xu, C.; Yi, S.; Hu, X.; Sun, N.; Jin, L.; Hu, B. Synlett 2018, 29, 1914.
[7]
(q) Sorabad, G. S.; Maddani, M. R. Asian J. Org. Chem. 2019, 8, 1336.
[7]
(r) Sun, S. N.; Ye, H. X.; Liu, H. B.; Guo, Y. B.; Gao, Z. H.; Pan, L.; Li, J. C.; Bi, X. J. ChemistryOpen 2023, 12, e202300002.
[7]
(s) Thurow, S.; Penteado, F.; Perin, G.; Alves, D.; Santi, C.; Monti, B.; Schiesser, C. H.; Barcellos, T.; Lenard?o, E. J. Org. Chem. Front. 2018, 5, 1983.
[7]
(t) Truong, T. S.; Retailleau, P.; Nguyen, T. B. Asian J. Org. Chem. 2022, 11, e202100751.
[7]
(u) Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565.
[8]
((a) Xu, X.; Li, J.; Wang, Z. Chin. J. Org. Chem. 2020, 40, 886 (in Chinese).
[8]
(徐鑫明, 李家柱, 王祖利, 有机化学, 2020, 40, 886.)
[8]
(b) Tong, Y.; Wang, Z.; Liu, B.; Xu, Y.; Gao, S.; Tang, X.; Zhang, X. Chin. J. Org. Chem. 2023, 43, 1310 (in Chinese).
[8]
(童宇星, 王子维, 刘奔, 徐耀威, 高颂, 唐向兵, 张兴华, 有机化学, 2023, 43, 1310.)
[9]
(a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.
[9]
(b) Barluenga, J.; Rodríguez, F.; Fa?anás, F. J. Chem.-Asian J. 2009, 4, 1036.
[9]
(c) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469.
[9]
(d) Ayesha; Bilal, M.; Rasool, N.; Khan, S. G.; Rashid, U.; Altaf, H.; Ali, I. Catalysts 2021, 11, 1018.
[9]
(e) Krüger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153.
[9]
(f) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
[10]
Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Adv. Synth. Catal. 2009, 351, 2615.
[11]
Li, J. X.; Li, C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 2875.
[12]
Li, J. X.; Tang, H.; Lin, Z. D.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Org. Biomol. Chem. 2020, 18, 4071.
[13]
Chen, Y.; Cho, C. H.; Larock, R. C. Org. Lett. 2009, 11, 173.
[14]
Du, H. A.; Tang, R. Y.; Deng, C. L.; Liu, Y.; Li, J. H.; Zhang, X. G. Adv. Synth. Catal. 2011, 353, 2739.
[15]
Chen, W. C.; Bai, R. K.; Cheng, W. L.; Peng, C. Y.; Reddy, D. M.; Badsara, S. S.; Lee, C. F. Org. Biomol. Chem. 2023, 21, 3002.
[16]
(a) Han, D. D.; Li, Z. M.; Fan, R. H. Org. Lett. 2014, 16, 6508.
[16]
(b) Li, X. M.; Zhang, B. B.; Zhang, J. R.; Wang, X.; Zhang, D. K.; Du, Y. F.; Zhao, K. Chin. J. Chem. 2021, 39, 1211.
[16]
(c) Li, X. M.; Sun, F. X.; Shi, H. F.; Zhang, B. B.; He, J. X.; Wu, J. L.; Du, Y. F. Org. Lett. 2023, 25, 3517.
[17]
(a) Cao, R. F.; Yu, L.; Huo, Y. X.; Li, Y.; Xue, X. S.; Chen, Z. M. Org. Lett. 2022, 24, 4093.
[17]
(b) Wei, W.; Liao, L. H.; Qin, T.; Zhao, X. D. Org. Lett. 2019, 21, 7846.
[18]
He, Y. P.; Wu, H.; Wang, Q.; Zhu, J. P. Angew. Chem., Int. Ed. 2020, 59, 2105.
[19]
Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898.
[20]
Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622.
[21]
Yang, W. C.; Chen, X. B.; Song, K. L.; Wu, B.; Gan, W. E.; Zheng, Z. J.; Cao, J.; Xu, L. W. Org. Lett. 2021, 23, 1309.
[22]
Kesavan, A.; Anbarasan, P. Chem. Commun. 2022, 58, 282.
[23]
Annese, C.; D'Accolti, L.; Fusco, C.; Licini, G.; Zonta, C. Chem.-Eur. J. 2017, 23, 259.
文章导航

/