核扩展的萘二酰亚胺-插烯四硫富瓦烯类双极性有机半导体
收稿日期: 2024-04-22
修回日期: 2024-05-23
网络出版日期: 2024-05-30
基金资助
国家自然科学基金(22225506); 中国科学院战略性先导科技专项B类(XDB0520101); 上海市启明星计划(21QA1411100); 中国科学院青年创新促进会(2022252)
Core-Expanded Naphthalene Diimides-Vinylogous Tetrathia-fulvalenes toward Ambipolar Organic Semiconductors
Received date: 2024-04-22
Revised date: 2024-05-23
Online published: 2024-05-30
Supported by
National Natural Science Foundation of China(22225506); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0520101); Shanghai Rising-Star Program(21QA1411100); Youth Innovation Promotion Association CAS(2022252)
与p-型和n-型有机半导体相结合的方法相比, 双极性有机半导体在构筑逻辑互补电路方面具有明显优势, 然而,目前综合性能优良的双极性有机半导体仍较为缺乏. 通过能级调控策略, 设计合成了五个苯并六元氮/氧/硫杂环核扩展的萘二酰亚胺-插烯四硫富瓦烯(NDI-VTTF)衍生物1~5, 并对其底栅顶接触结构的有机场效应晶体管(OFET)器件性能进行了研究. 结果表明化合物1~5均具有双极性载流子传输特性, 其中化合物1, 3~5是电子传输主导的双极性有机半导体, 而化合物2是电子和空穴传输性能平衡的双极性有机半导体. 得益于热退火处理对薄膜结晶性的提高和微观形貌的改善, 基于化合物1~5的薄膜OFET器件的迁移率均随热退火温度的升高而增大, 其中基于化合物2的薄膜OFET器件经180 ℃热退火后的电子和空穴迁移率分别达到0.037和0.050 cm2•V-1•s-1.
张瑞 , 何萌萌 , 向焌钧 , 蔡莎莉 , 葛从伍 , 高希珂 . 核扩展的萘二酰亚胺-插烯四硫富瓦烯类双极性有机半导体[J]. 有机化学, 2024 , 44(9) : 2810 -2819 . DOI: 10.6023/cjoc202404033
In comparison with the combination of p- and n-type organic semiconductors, the way to construct logic comple- mentary circuits by ambipolar organic semiconductors has obvious advantages. However, so far, the ambipolar ones with high performance are still scarce. In this work, a series of benzo six-membered nitrogen/oxygen/sulfur heterocycles core-substituted naphthalene diimides-vinylogous tetrathiafulvalene (NDI-VTTF) derivatives 1~5 were designed by energy level regulation strategy. Subsequently, bottom-gate and top-contact organic field-effect transistors (OFETs) based on compounds 1~5 were fabricated and systematically studied. The results showed that all the OFET devices exhibit ambipolar semiconducting behaviors, among them the OFET devices based on compounds 1, 3~5 displayed electron-dominated ambipolar charge transport characteristics, while the devices based on compound 2 showed balanced ambipolar charge transport features. Due to the improvement of thin-film crystallinity and morphology by thermal annealing treatment, the performance of OFETs based on compounds 1~5 was improved with the increase of thermal annealing temperature. When thermal annealed at 180 ℃, OFETs based on compound 2 showed the balanced electron and hole mobilities of up to 0.037 and 0.050 cm2•V-1•s-1, respectively.
| [1] | (a) Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Nature 2000, 403, 521. |
| [1] | (b) Liu, K.; Ouyang, B.; Guo, X. J.; Guo, Y. L.; Liu, Y. Q. npj Flexible Electron. 2022, 6, 1. |
| [1] | (c) Liu, H. R.; Liu, D.; Yang, J. C.; Gao, H. F.; Wu, Y. C. Small 2023, 19, 2206938. |
| [1] | (d) Watanabe, K.; Miura, N.; Taguchi, H.; Komatsu, T.; Aratake, A.; Makita, T.; Tanabe, M.; Wakimoto, T.; Kumagai, S.; Okamoto, T.; Watanabe, S.; Takeya, J. Adv. Mater. Technol. 2024, 9, 2301673. |
| [1] | (e) Zeng, W.-J.; Zhou, X.-Y.; Pan, X.-J.; Song, C.-L.; Zhang, H.-L. AIP Adv. 2013, 3, 012101. |
| [2] | (a) Higashino, T.; Mori, T. Phys. Chem. Chem. Phys. 2022, 24, 9770. |
| [2] | (b) Zhang, Y. H.; Wang, Y. S.; Gao, C.; Ni, Z. J.; Zhang, X. T.; Hu, W. P.; Dong, H. L. Chem. Soc. Rev. 2023, 52, 1331. |
| [3] | (a) Kobaisi, M. A.; Bhosale, S. V.; Latham, K.; Raynor, A. M.; Bhosale, S. V. Chem. Rev. 2016, 116, 11685. |
| [3] | (b) Takimiya, K.; Nakano, M. Bull. Chem. Soc. Jpn 2018, 91, 121. |
| [3] | (c) Shukla, J.; Mukhopadhyay, P. Eur. J. Org. Chem. 2019, 7770. |
| [3] | (d) Insuasty, A.; Maniam, S.; Langford, S. J. Chem.-Eur. J. 2019, 25, 7058. |
| [3] | (e) Zhang, C.; Wang, Z. R.; Li, H.; Lu, J. M.; Zhang, Q. C. Org. Chem. Front. 2020, 7, 3001. |
| [3] | (f) Bhosale, S. V.; Kobaisi, M. A.; Jadhav, R. W.; Morajkar, P. P.; Jones, L. A.; George, S. Chem. Soc. Rev. 2021, 50, 9845. |
| [4] | Luo, H. W.; Cai, Z. X.; Tan, L. X.; Guo, Y. L.; Yang, G.; Liu, Z. T.; Zhang, G. X.; Zhang, D. Q.; Xu, W.; Liu, Y. Q. J. Mater. Chem. C 2013, 1, 2688. |
| [5] | Hu, J. Y.; Nakano, M.; Osaka, I.; Takimiya, K. J. Mater. Chem. C 2015, 3, 4244. |
| [6] | Cui, X. P.; Xiao, C. Y.; Winands, T.; Koch, T.; Li, Y.; Zhang, L.; Doltsinis, N. L.; Wang, Z. H. J. Am. Chem. Soc. 2018, 140, 12175. |
| [7] | Hu, Y. B.; Wang, Z. L.; Zhang, X.; Yang, X. D.; Ge, C. W.; Fu, L. N.; Gao, X. K. Org. Lett. 2017, 19, 468. |
| [8] | ((a) Zhou, M.; Li, J.; Cheng, J.; Ge, C. W.; Cheng, T. Y.; Gao, X. K. Chin. J. Org. Chem. 2021, 41, 4400 (in Chinese). |
| [8] | (周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.) |
| [8] | (b) Zhao, B.; Li, C.-Z.; Liu, S.-Q.; Richards, J. J.; Chueh, C.-C.; Ding, F. Z.; Pozzo, L. D.; Li, X. S.; Jen, A. K. Y. J. Mater. Chem. A 2015, 3, 6929. |
| [8] | (c) Gao, X. K.; Di, C.-A.; Hu, Y. B.; Yang, X. D.; Fan, H. Y.; Zhang, F.; Liu, Y. Q.; Li, H. Q.; Zhu, D. B. J. Am. Chem. Soc. 2010, 132, 3697. |
| [8] | (d) Henriksen, L. Acta Chem. Scand. 1996, 50, 432. |
| [9] | Azumi, R.; G?tz, G.; B?uerle, P. Synth. Met. 1999, 101, 544. |
| [10] | Ohtsuka, N.; Nakano, M.; Nakagawa, S.; Shahiduzzaman, M.; Karakawa, M.; Taima, T.; Minoura, M. Chem. Commun. 2020, 56, 12343. |
| [11] | Cai, K.; Xie, J. J.; Yang, X.; Zhao, D. H. Org. Lett. 2014, 16, 1852. |
| [12] | Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev. 2000, 100, 1973. |
| [13] | Dou, L. T.; Liu, Y. S.; Hong, Z. R.; Li, G.; Yang, Y. Chem. Rev. 2015, 115, 12633. |
| [14] | Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Adv. Mater. 2011, 23, 2367. |
| [15] | (a) Cameron, J.; Kanibolotsky, A. L.; Skabara, P. J. Adv. Mater. 2023, 2302259. |
| [15] | (b) Gleiter, R.; Haberhauer, G.; Werz, D. B.; Rominger, F.; Bleiholder, C. Chem. Rev. 2018, 118, 2010. |
| [15] | (c) Xie, J. J.; Shi, K.; Cai, K.; Zhang, D.; Wang, J.-Y.; Pei, J.; Zhao, D. H. Chem. Sci. 2016, 7, 499. |
| [15] | (d) Han, W. J.; Wang, Z. L.; Hu, Y. B.; Yang, X. D.; Ge, C. W.; Gao, X. K. Sci. China Chem. 2020, 63, 1182. |
| [16] | (a) Hu, Y. B.; Gao, X. K.; Di, C.-A.; Yang, X. D.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. Chem. Mater. 2011, 23, 1204. |
| [16] | (b) Chen, X.; Guo, Y. L.; Tan, L. X.; Yang, G.; Li, Y. H.; Zhang, G. X.; Liu, Z. T.; Xu, W.; Zhang, D. Q. J. Mater. Chem. C 2013, 1, 1087. |
| [16] | (c) Zhou, Q.; Yang, J. F.; Du, M. X.; Yu, X. B.; Li, C.; Zhang, X.-S.; Peng, Q.; Zhang, G. X.; Zhang, D. Q. J. Mater. Chem. C 2022, 10, 2814. |
| [17] | (a) Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T. Chem. Mater. 2008, 20, 7486. |
| [17] | (b) Ichikawa, M.; Yokota, Y.; Jeon, H.-G.; Banoukepa, G. d. R.; Hirata, N.; Oguma, N. Org. Electron. 2013, 14, 516. |
| [17] | (c) Welford, A.; Maniam, S.; Gann, E.; Jiao, X. C.; Thomsen, L.; Langford, S. J.; McNeill, C. R. Org. Electron. 2019, 75, 105378. |
| [18] | R?ger, C.; Würthner, F. J. Org. Chem. 2007, 72, 8070. |
/
| 〈 |
|
〉 |