研究论文

Rh(III)催化烯烃与重氮化物氨基烷基化反应构筑异吲哚啉酮

  • 刘玉英 ,
  • 符展维 ,
  • 杨超 ,
  • 罗木鹏 ,
  • 班树荣 ,
  • 王守国
展开
  • a 山西医科大学药学院 太原 030001
    b 山西医科大学 慢性肾脏病教育部医药基础研究创新中心 太原 030001
    c 山西医科大学 药物合成与制剂新技术山西省重点实验室 太原 030001
    d 中国科学院深圳先进技术研究院 深圳 518055
†共同第一作者

收稿日期: 2024-05-13

  修回日期: 2024-05-22

  网络出版日期: 2024-05-30

基金资助

山西省自然科学基金(202303021221131); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ20210324101810028); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ-20220818101601004); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ20220818095801004)

Rh(III)-Catalyzed Aminoalkylation of Alkenes with Diazo Compounds toward Functionalized Isoindolinones

  • Yuying Liu ,
  • Zhanwei Fu ,
  • Chao Yang ,
  • Mupeng Luo ,
  • Shurong Ban ,
  • Shouguo Wang
Expand
  • a School of Pharmacy, Shanxi Medical University, Taiyuan 030001
    b Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001
    c Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001
    d Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055
†These authors contributed equally to this work.

Received date: 2024-05-13

  Revised date: 2024-05-22

  Online published: 2024-05-30

Supported by

Natural Science Foundation of Shanxi Province(202303021221131); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ20210324101810028); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ-20220818101601004); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ20220818095801004)

摘要

报道了[Cp*RhCl2]2催化的烯烃与重氮化合物的氨基烷基化串联环化反应, 实现了一系列3,3-双取代异吲哚啉酮的高效、快速构建. 该反应具有反应条件温和、反应选择性好以及底物适用范围广等优点, 为一系列具有应用价值的异吲哚啉酮骨架化合物的合成提供了一种原子经济性方法.

本文引用格式

刘玉英 , 符展维 , 杨超 , 罗木鹏 , 班树荣 , 王守国 . Rh(III)催化烯烃与重氮化物氨基烷基化反应构筑异吲哚啉酮[J]. 有机化学, 2024 , 44(11) : 3505 -3517 . DOI: 10.6023/cjoc202405016

Abstract

A [Cp*RhCl2]2-catalyzed intramolecular annulation reaction via aminoalkylation of alkenes with diazo compounds has been developed to construct highly-functionalized isoindolinones. This approach exhibits step economy, mild reaction conditions, and good functional group tolerance, facilitating access to a wide range of highly-valuable functionalized isoindolinones with high level of yields (up to 99% yield).

参考文献

[1]
(a) Reddy M. C.; Dey A.; Jeganmohan M.; Padala K. New J. Chem. 2023, 47, 16266.
[1]
(b) Upadhyay S. P.; Thapa P.; Sharma R.; Sharma M. Fitoterapia 2020, 146, 104722.
[1]
(c) Speck K.; Magauer T. Beilstein J. Org. Chem. 2013, 9, 2048.
[2]
Bj?re A.; Bostr?m J.; Davidsson ?.; Emten?s H.; Gran U.; Iliefski T.; Kajanus J.; Olsson R.; Sandberg L.; Strandlund G.; Sundell J.; Yuan Z.-Q. WO 2008008022, 2008.
[3]
Baldwin J. J.; Cacatian S.; Claremon D. A.; Dillard L. W.; Flaherty P. T.; Ishchenko A. V.; Jia L.; McGeehan G.; Simpson R. D.; Singh S. B.; Tice C. M.; Xu Z.; Yuan J.; Zhao W.; Zhuang L. WO 2008156816, 2008.
[4]
Pereira N. A.; Monteiro ?.; Machado M.; Gut J.; Molins E.; Perry M. J.; Dourado J.; Moreira R.; Rosenthal P. J.; Prudêncio M. ChemMedChem 2015, 10, 2080.
[5]
Wacker D. A.; Zhao G.; Kwon C.; Varnes J. G.; Stein P. D. US 20050080074, 2005.
[6]
(a) Cheng D.-J.; Shao Y.-D. Adv. Synth. Catal. 2018, 360, 3614.
[6]
(b) Gao W.; Chen M.-W.; Ding Q.-P.; Peng Y.-Y. Chem.-Asian J. 2019, 14, 1306.
[6]
(c) Chen L.; Zou Y.-X. Adv. Synth. Catal. 2021, 363, 4159.
[6]
(d) Topolov?an N.; Gredi?ak M. Org. Biomol. Chem. 2021, 19, 4637.
[6]
(e) Samanta S.; Ali S. A.; Bera A.; Giri S.; Samanta K. New J. Chem. 2022, 46, 7780.
[7]
(a) Race N. J.; Hazelden I. R.; Faulkner A.; Bower J. F. Chem. Sci. 2017, 8, 5248.
[7]
(b) Savela R.; Méndez-Gálvez C. Chem.-Eur. J. 2021, 27, 5344.
[8]
Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916.
[9]
(a) Zhu Z.; Wu Q.; Song X.; Ni Q. J. Org. Chem. 2024, 89, 2794.
[9]
(b) Zhong J.; Pan R.; Lin X. RSC Adv. 2024, 14, 1106.
[9]
(c) Yang K.-C.; Zheng S.-L.; Wen Z.; Zhang Y.-S.; Ni H.-L.; Chen L. Org. Biomol. Chem. 2024, 22, 3453.
[9]
(d) Unhale R. A.; Sadhu M. M.; Singh V. K. Org. Lett. 2022, 24, 3319.
[9]
(e) Qian C.; Liu M.; Sun J.; Li P. Org. Chem. Front. 2022, 9, 1234.
[9]
(f) Khajuria C.; Sadhu M. M.; Unhale R. A.; Singh V. K. Tetrahedron Lett. 2022, 112, 154230.
[9]
(g) Bhosale V. A.; Císa?ová I.; Kamlar M.; Vesely J. Chem. Commun. 2022, 58, 9942.
[9]
(h) Mati?i? M.; Gredi?ak M. Chem. Commun. 2021, 57, 13546.
[9]
(i) Feng F.-F.; Li J.-S.; Li S.; Ma J.-A. Adv. Synth. Catal. 2019, 361, 4222.
[9]
(j) Nishimura T.; Noishiki A.; Ebe Y.; Hayashi T. Angew. Chem., Int. Ed. 2013, 52, 1777.
[10]
Svestka D.; Bobal P.; Waser M.; Otevrel J. Org. Lett. 2024, 26, 2505.
[11]
Comins D. L.; Schilling S.; Zhang Y. Org. Lett. 2005, 7, 95.
[12]
(a) Shi Z.; Li N.; Wang W.-Z.; Lu H.-K.; Yuan Y.; Li Z.; Ye K.-Y. Org. Biomol. Chem. 2022, 20, 4320.
[12]
(b) Lu F.; Xu J.; Li H.; Wang K.; Ouyang D.; Sun L.; Huang M.; Jiang J.; Hu J.; Alhumade H.; Lu L.; Lei A. Green Chem. 2021, 23, 7982.
[12]
(c) Li X.-H.; Gong J.-F.; Song M.-P. Org. Biomol. Chem. 2021, 19, 5876.
[12]
(d) Huang W.; Shrestha M.; Wang C.; Fang K.; Teng Y.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4106.
[12]
(e) Borja-Miranda A.; Valencia-Villegas F.; Lujan-Montelongo J. A.; Polindara-García L. A. J. Org. Chem. 2021, 86, 929.
[12]
(f) Abe M.; Ueta K.; Tanaka S.; Kimachi T.; Inamoto K. RSC Adv. 2021, 11, 26988.
[12]
(g) Yoshinaga Y.; Yamamoto T.; Suginome M. Angew. Chem., Int. Ed. 2020, 132, 7318.
[12]
(h) Shen C.; Zeidan N.; Wu Q.; Breuers C. B. J.; Liu R.-R.; Jia Y.-X.; Lautens M. Chem. Sci. 2019, 10, 3118.
[12]
(i) Li X.; Zhou B.; Yang R.-Z.; Yang F.-M.; Liang R.-X.; Liu R.-R.; Jia Y.-X. J. Am. Chem. Soc. 2018, 140, 13945.
[12]
(j) Qin X.; Lee M. W. Y.; Zhou J. S. Angew. Chem., Int. Ed. 2017, 129, 12897.
[12]
(k) Liu R. R.; Wang Y. G.; Li Y. L.; Huang B. B.; Liang R. X.; Jia Y. X. Angew. Chem., Int. Ed. 2017, 129, 7583.
[12]
(l) Douki K.; Ono H.; Taniguchi T.; Shimokawa J.; Kitamura M.; Fukuyama T. J. Am. Chem. Soc. 2016, 138, 14578.
[12]
(m) Zhao J.-F.; Duan X.-H.; Yang H.; Guo L.-N. J. Org. Chem. 2015, 80, 11149.
[12]
(n) Yang H.; Duan X.-H.; Zhao J.-F.; Guo L.-N. Org. Lett. 2015, 17, 1998.
[12]
(o) Shen C.; Liu R.-R.; Fan R.-J.; Li Y.-L.; Xu T.-F.; Gao J.-R.; Jia Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.
[13]
(a) Lukasevics L.; Cizikovs A.; Grigorjeva L. Org. Lett. 2020, 22, 2720.
[13]
(b) Fu L.-Y.; Ying J.; Qi X.; Peng J.-B.; Wu X.-F. J. Org. Chem. 2019, 84, 1421.
[13]
(c) Reddy C. B.; Ram S.; Kumar A.; Bharti R.; Das P. Chem.-Eur. J. 2019, 25, 4067.
[13]
(d) Bai X.-F.; Mu Q.-C.; Xu Z.; Yang K.-F.; Li L.; Zheng Z.-J.; Xia C.-G.; Xu L.-W. ACS Catal. 2019, 9, 1431.
[13]
(e) Ling F.; Ai C.; Lv Y.; Zhong W. Adv. Synth. Catal. 2017, 359, 3707.
[13]
(f) Han J.; Wang N.; Huang Z.-B.; Zhao Y.; Shi D.-Q. J. Org. Chem. 2017, 82, 6831.
[13]
(g) Tjutrins J.; Shao J. L.; Yempally V.; Bengali A. A.; Arndtsen B. A. Organometallics 2015, 34, 1802.
[13]
(h) Fujioka M.; Morimoto T.; Tsumagari T.; Tanimoto H.; Nishiyama Y.; Kakiuchi K. J. Org. Chem. 2012, 77, 2911.
[14]
(a) Cui W.-J.; Wu Z.-J.; Gu Q.; You S.-L. J. Am. Chem. Soc. 2020, 142, 7379.
[14]
(b) Jing K.; Wang X.-N.; Wang G.-W. J. Org. Chem. 2019, 84, 161.
[14]
(c) Li T.; Zhou C.; Yan X.; Wang J. Angew. Chem., Int. Ed. 2018, 57, 4048.
[14]
(d) Wu X.; Wang B.; Zhou S.; Zhou Y.; Liu H. ACS Catal. 2017, 7, 2494.
[14]
(e) Wang C.-Q.; Ye L.; Feng C.; Loh T. P. J. Am. Chem. Soc. 2017, 139, 1762.
[14]
(f) Hong S. Y.; Jeong J.; Chang S. Angew. Chem., Int. Ed. 2017, 56, 2408.
[14]
(g) Bechtoldt A.; Tirler C.; Raghuvanshi K.; Warratz S.; Kornhaa? C.; Ackermann L. Angew. Chem., Int. Ed. 2016, 55, 264.
[14]
(h) Ma W.; Ackermann L. ACS Catal. 2015, 5, 2822.
[14]
(i) Lu Y.; Wang H.-W.; Spangler J. E.; Chen K.; Cui P.-P.; Zhao Y.; Sun W.-Y.; Yu J.-Q. Chem. Sci. 2015, 6, 1923.
[14]
(j) Ye B.; Cramer N. Angew. Chem., Int. Ed. 2014, 53, 7896.
[14]
(k) Hyster T. K.; Ruhl K. E.; Rovis T. J. Am. Chem. Soc. 2013, 135, 5364.
[14]
(l) Zhu C.; Falck J. R. Org. Lett. 2011, 13, 1214.
[14]
(m) Wang F.; Song G.; Li X. Org. Lett. 2010, 12, 5430.
[15]
(a) Ratushnyy M.; Kvasovs N.; Sarkar S.; Gevorgyan V. Angew. Chem., Int. Ed. 2020, 59, 10316.
[15]
(b) Newman S. G.; Howell J. K.; Nicolaus N.; Lautens M. J. Am. Chem. Soc. 2011, 133, 14916.
[16]
(a) Zhang Z.; Su B.; Gong J.; Tao H.; Mai S. Org. Lett. 2024, 26, 1886.
[16]
(b) Liang M.; He M.; Zhong Z.; Wan B.; Du Q.; Mai S. Angew. Chem., Int. Ed. 2024, 63, e202400741.
[16]
(c) Yang Q.; Bai J.-X.; Yang H.; Yao Y.; Yao Y.-M.; Sun J.-W.; Sun S. Org. Lett. 2023, 25, 7148.
[16]
(d) Yang C.; Shi L.; Wang W.; Xia J.-B.; Li F. Org. Chem. Front. 2023, 10, 872.
[16]
(e) Yang C.; Shi L.; Wang F.; Su Y.; Xia J.-B.; Li F. ACS Catal. 2022, 12, 14194.
[16]
(f) Wang J.; Zheng G.; Li X. Chem. Commun. 2020, 56, 7809.
[17]
(a) Liu Z.; Sivaguru P.; Zanoni G.; Bi X. Acc. Chem. Res. 2022, 55, 1763.
[17]
(b) Jana S.; Guo Y.; Koenigs R. M. Chem.-Eur. J. 2021, 27, 1270.
[17]
(c) Feliciano A.; Vázquez J. L.; Benítez-Puebla L. J.; Velazco- Cabral I.; Cruz Cruz D.; Delgado F.; Vázquez M. A. Chem.-Eur. J. 2021, 27, 8233.
[17]
(d) Bhakta S.; Ghosh T. Tetrahedron 2021, 90, 132167.
[17]
(e) Zhou S.; Li J.; Schlangen M.; Schwarz H. Acc. Chem. Res. 2016, 49, 494.
[17]
(f) Jellema E.; Jongerius A. L.; Reek J. N. H.; Bruin B. D. Chem. Soc. Rev. 2010, 39, 1706.
[17]
(g) Li Z.; He C. Eur. J. Org. Chem. 2006, 2006, 4313.
[17]
(h) Liu S.-T.; Rajender Reddy K. Chem. Soc. Rev. 1999, 28, 315.
[18]
(a) Zhang Y.; Zhang J.-J.; Lou L.; Lin R.; Cramer N.; Wang S.-G.; Chen Z. Chem. Soc. Rev. 2024, 53, 3457.
[18]
(b) Pan Y.-S.; Qin X.; Yuan C.-K.; Lu Y. Chin. J. Org. Chem. 2023, 43, 924 (in Chinese).
[18]
(潘彦年, 秦萧, 袁成凯, 鲁艺, 有机化学, 2023, 43, 924.)
[18]
(c) Liu C.-X.; Yin S.-Y.; Zhao F.; Yang H.; Feng Z.; Gu Q.; You S.-L. Chem. Rev. 2023, 123, 10079.
[18]
(d) Mas-Roselló J.; Herraiz A. G.; Audic B.; Laverny A.; Cramer N. Angew. Chem., Int. Ed. 2021, 60, 13198.
[18]
(e) Rej S.; Chatani N. Angew. Chem., Int. Ed. 2019, 58, 8304.
[18]
(f) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
[19]
(a) Xie Y.; Xuan J. Chin. J. Org. Chem. 2022, 42, 4247 (in Chinese).
[19]
(谢阳, 宣俊, 有机化学, 2022, 42, 4247.)
[19]
(b) Wang J. Tetrahedron Lett. 2022, 108, 154135.
[19]
(c) Li S.; Zhou L. Chin. J. Org. Chem. 2022, 42, 3944 (in Chinese).
[19]
(李森, 周磊, 有机化学, 2022, 42, 3944.)
[19]
(d) Durka J.; Turkowska J.; Gryko D. ACS Sustainable Chem. Eng. 2021, 9, 8895.
[19]
(e) Zhao R.; Shi L. Angew. Chem., Int. Ed. 2020, 59, 12282.
[19]
(f) Green S. P.; Wheelhouse K. M.; Payne A. D.; Hallett J. P.; Miller P. W.; Bull J. A. Org. Process Res. Dev. 2020, 24, 67.
[19]
(g) Feng J.-J.; Yi X.-Y.; Fu Y.-F.; Yu Y.; Huang F. Chin. J. Org. Chem. 2019, 39, 3013 (in Chinese).
[19]
(封佳俊, 易享炎, 傅耀锋, 于杨, 黄菲, 有机化学, 2019, 39, 3013.)
[19]
(h) Khanal H. D.; Thombal R. S.; Maezono S. M. B.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 3185.
[19]
(i) Gao Y.-P.; Wang J.-B. Chin. J. Org. Chem. 2018, 38, 1275 (in Chinese).
[19]
(郜云鹏, 王剑波, 有机化学, 2018, 38, 1275.)
[19]
(j) Wang L.; Li Z.; Wan K.; Qu X.; Hu S.-Q.; Wang F. Chin. J. Org. Chem. 2016, 36, 889 (in Chinese).
[19]
(王亮, 李站, 万康, 瞿星, 胡思前, 王锋, 有机化学, 2016, 36, 889.)
[19]
(k) Zhu S.-F.; Zhou Q.-L. Natl. Sci. Rev. 2014, 1, 580.
[19]
(l) Tang M.; Xing D.; Cai M.-Q.; Hu W.-H. Chin. J. Org. Chem. 2014, 34, 1268 (in Chinese).
[19]
(唐敏, 邢栋, 蔡茂强, 胡文浩, 有机化学, 2014, 34, 1268.)
[19]
(m) Zhang Y.; Wang J. Eur. J. Org. Chem. 2011, 2011, 1015.
[19]
(n) Chiara J. L.; Suárez J. R. Adv. Synth. Catal. 2011, 353, 575.
[20]
(a) He Y.; Huang Z.; Wu K.; Ma J.; Zhou Y.-G.; Yu Z. Chem. Soc. Rev. 2022, 51, 2759.
[20]
(b) Zhao X.; Wang G.; Hashmi A. S. K. ChemCatChem 2021, 13, 4299.
[20]
(c) Pal K.; Volla C. M. R. Chem. Rec. 2021, 21, 4032.
[20]
(d) Wang F.-Y.; Zhang Z.-P.; Huang F. Chin. J. Org. Chem. 2021, 41, 144 (in Chinese).
[20]
(王飞雨, 张志朋, 黄菲, 有机化学, 2021, 41, 144.)
[20]
(e) Zhang H.-M.; Li L.-Z.; Shen F.-Q.; Cai T.; Shen R.-P. Chin. J. Org. Chem. 2020, 40, 873 (in Chinese).
[20]
(张慧苗, 李灵芝, 沈方旗, 蔡涛, 沈润溥, 有机化学, 2020, 40, 873.)
[20]
(f) Xiang Y.; Wang C.; Ding Q.; Peng Y. Adv. Synth. Catal. 2019, 361, 919.
[20]
(g) Ren Y.-Y.; Zhu S.-F.; Zhou Q.-L. Org. Biomol. Chem. 2018, 16, 3087.
[20]
(h) Zhu S.-F.; Zhou Q.-L. Acc. Chem. Res. 2012, 45, 1365.
[20]
(i) Doyle M. P.; Duffy R.; Ratnikov M.; Zhou L. Chem. Rev. 2010, 110, 704.
[21]
(a) Chen Z.-L.; Xie Y.; Xuan J. Eur. J. Org. Chem. 2022, 2022, e202201066.
[21]
(b) Tang X.-T.; Yang F.; Zhang T.-T.; Liu Y.-F.; Liu S.-Y.; Su T.-F.; Lv D.-C.; Shen W.-B. Catalysts 2020, 10, 350.
[21]
(c) Díaz-Requejo M. M.; Pérez P. J. J. Organomet. Chem. 2005, 690, 5441.
[21]
(d) Che C.-M.; Huang J.-S. Coord. Chem. Rev. 2002, 231, 151.
[22]
(a) Yang Y.; Arnold F. H. Acc. Chem. Res. 2021, 54, 1209.
[22]
(b) Kumar S.; Nunewar S.; Oluguttula S.; Nanduri S.; Kanchupalli V. Org. Biomol. Chem. 2021, 19, 1438.
[22]
(c) Jha N.; Khot N. P.; Kapur M. Chem. Rec. 2021, 21, 4088.
[22]
(d) Xia Y.; Qiu D.; Wang J. Chem. Rev. 2017, 117, 13810.
[23]
(a) Chen X.; Xiao F.; He W.-M. Org. Chem. Front. 2021, 8, 5206.
[23]
(b) Dhungana R. K.; Sapkota R. R.; Niroula D.; Giri R. Chem. Sci. 2020, 11, 9757.
[23]
(c) Hazelden I. R.; Ma X.; Langer T.; Bower J. F. Angew. Chem., Int. Ed. 2016, 55, 11198.
[23]
(d) Hanley P. S.; Hartwig J. F. Angew. Chem., Int. Ed. 2013, 52, 8510.
[23]
(e) Minatti A.; Mu?iz K. Chem. Soc. Rev. 2007, 36, 1142.
[24]
(a) Gao J.; Luo K.; Wei X.; Wang H.; Liu H.; Zhou Y. Org. Lett. 2023, 25, 3341.
[24]
(b) Sihag P.; Chakraborty T.; Jeganmohan M. Org. Lett. 2023, 25, 1257.
文章导航

/