Rh(III)催化烯烃与重氮化物氨基烷基化反应构筑异吲哚啉酮
收稿日期: 2024-05-13
修回日期: 2024-05-22
网络出版日期: 2024-05-30
基金资助
山西省自然科学基金(202303021221131); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ20210324101810028); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ-20220818101601004); 山西省特色药物研制工程研究中心和深圳市科技创新委员会(JCYJ20220818095801004)
Rh(III)-Catalyzed Aminoalkylation of Alkenes with Diazo Compounds toward Functionalized Isoindolinones
Received date: 2024-05-13
Revised date: 2024-05-22
Online published: 2024-05-30
Supported by
Natural Science Foundation of Shanxi Province(202303021221131); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ20210324101810028); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ-20220818101601004); Project of Shanxi Engineering Research Center of Characteristic Drug Development, and the Shenzhen Science and Technology Innovation Committee(JCYJ20220818095801004)
刘玉英 , 符展维 , 杨超 , 罗木鹏 , 班树荣 , 王守国 . Rh(III)催化烯烃与重氮化物氨基烷基化反应构筑异吲哚啉酮[J]. 有机化学, 2024 , 44(11) : 3505 -3517 . DOI: 10.6023/cjoc202405016
A [Cp*RhCl2]2-catalyzed intramolecular annulation reaction via aminoalkylation of alkenes with diazo compounds has been developed to construct highly-functionalized isoindolinones. This approach exhibits step economy, mild reaction conditions, and good functional group tolerance, facilitating access to a wide range of highly-valuable functionalized isoindolinones with high level of yields (up to 99% yield).
| [1] | (a) Reddy M. C.; Dey A.; Jeganmohan M.; Padala K. New J. Chem. 2023, 47, 16266. |
| [1] | (b) Upadhyay S. P.; Thapa P.; Sharma R.; Sharma M. Fitoterapia 2020, 146, 104722. |
| [1] | (c) Speck K.; Magauer T. Beilstein J. Org. Chem. 2013, 9, 2048. |
| [2] | Bj?re A.; Bostr?m J.; Davidsson ?.; Emten?s H.; Gran U.; Iliefski T.; Kajanus J.; Olsson R.; Sandberg L.; Strandlund G.; Sundell J.; Yuan Z.-Q. WO 2008008022, 2008. |
| [3] | Baldwin J. J.; Cacatian S.; Claremon D. A.; Dillard L. W.; Flaherty P. T.; Ishchenko A. V.; Jia L.; McGeehan G.; Simpson R. D.; Singh S. B.; Tice C. M.; Xu Z.; Yuan J.; Zhao W.; Zhuang L. WO 2008156816, 2008. |
| [4] | Pereira N. A.; Monteiro ?.; Machado M.; Gut J.; Molins E.; Perry M. J.; Dourado J.; Moreira R.; Rosenthal P. J.; Prudêncio M. ChemMedChem 2015, 10, 2080. |
| [5] | Wacker D. A.; Zhao G.; Kwon C.; Varnes J. G.; Stein P. D. US 20050080074, 2005. |
| [6] | (a) Cheng D.-J.; Shao Y.-D. Adv. Synth. Catal. 2018, 360, 3614. |
| [6] | (b) Gao W.; Chen M.-W.; Ding Q.-P.; Peng Y.-Y. Chem.-Asian J. 2019, 14, 1306. |
| [6] | (c) Chen L.; Zou Y.-X. Adv. Synth. Catal. 2021, 363, 4159. |
| [6] | (d) Topolov?an N.; Gredi?ak M. Org. Biomol. Chem. 2021, 19, 4637. |
| [6] | (e) Samanta S.; Ali S. A.; Bera A.; Giri S.; Samanta K. New J. Chem. 2022, 46, 7780. |
| [7] | (a) Race N. J.; Hazelden I. R.; Faulkner A.; Bower J. F. Chem. Sci. 2017, 8, 5248. |
| [7] | (b) Savela R.; Méndez-Gálvez C. Chem.-Eur. J. 2021, 27, 5344. |
| [8] | Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916. |
| [9] | (a) Zhu Z.; Wu Q.; Song X.; Ni Q. J. Org. Chem. 2024, 89, 2794. |
| [9] | (b) Zhong J.; Pan R.; Lin X. RSC Adv. 2024, 14, 1106. |
| [9] | (c) Yang K.-C.; Zheng S.-L.; Wen Z.; Zhang Y.-S.; Ni H.-L.; Chen L. Org. Biomol. Chem. 2024, 22, 3453. |
| [9] | (d) Unhale R. A.; Sadhu M. M.; Singh V. K. Org. Lett. 2022, 24, 3319. |
| [9] | (e) Qian C.; Liu M.; Sun J.; Li P. Org. Chem. Front. 2022, 9, 1234. |
| [9] | (f) Khajuria C.; Sadhu M. M.; Unhale R. A.; Singh V. K. Tetrahedron Lett. 2022, 112, 154230. |
| [9] | (g) Bhosale V. A.; Císa?ová I.; Kamlar M.; Vesely J. Chem. Commun. 2022, 58, 9942. |
| [9] | (h) Mati?i? M.; Gredi?ak M. Chem. Commun. 2021, 57, 13546. |
| [9] | (i) Feng F.-F.; Li J.-S.; Li S.; Ma J.-A. Adv. Synth. Catal. 2019, 361, 4222. |
| [9] | (j) Nishimura T.; Noishiki A.; Ebe Y.; Hayashi T. Angew. Chem., Int. Ed. 2013, 52, 1777. |
| [10] | Svestka D.; Bobal P.; Waser M.; Otevrel J. Org. Lett. 2024, 26, 2505. |
| [11] | Comins D. L.; Schilling S.; Zhang Y. Org. Lett. 2005, 7, 95. |
| [12] | (a) Shi Z.; Li N.; Wang W.-Z.; Lu H.-K.; Yuan Y.; Li Z.; Ye K.-Y. Org. Biomol. Chem. 2022, 20, 4320. |
| [12] | (b) Lu F.; Xu J.; Li H.; Wang K.; Ouyang D.; Sun L.; Huang M.; Jiang J.; Hu J.; Alhumade H.; Lu L.; Lei A. Green Chem. 2021, 23, 7982. |
| [12] | (c) Li X.-H.; Gong J.-F.; Song M.-P. Org. Biomol. Chem. 2021, 19, 5876. |
| [12] | (d) Huang W.; Shrestha M.; Wang C.; Fang K.; Teng Y.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4106. |
| [12] | (e) Borja-Miranda A.; Valencia-Villegas F.; Lujan-Montelongo J. A.; Polindara-García L. A. J. Org. Chem. 2021, 86, 929. |
| [12] | (f) Abe M.; Ueta K.; Tanaka S.; Kimachi T.; Inamoto K. RSC Adv. 2021, 11, 26988. |
| [12] | (g) Yoshinaga Y.; Yamamoto T.; Suginome M. Angew. Chem., Int. Ed. 2020, 132, 7318. |
| [12] | (h) Shen C.; Zeidan N.; Wu Q.; Breuers C. B. J.; Liu R.-R.; Jia Y.-X.; Lautens M. Chem. Sci. 2019, 10, 3118. |
| [12] | (i) Li X.; Zhou B.; Yang R.-Z.; Yang F.-M.; Liang R.-X.; Liu R.-R.; Jia Y.-X. J. Am. Chem. Soc. 2018, 140, 13945. |
| [12] | (j) Qin X.; Lee M. W. Y.; Zhou J. S. Angew. Chem., Int. Ed. 2017, 129, 12897. |
| [12] | (k) Liu R. R.; Wang Y. G.; Li Y. L.; Huang B. B.; Liang R. X.; Jia Y. X. Angew. Chem., Int. Ed. 2017, 129, 7583. |
| [12] | (l) Douki K.; Ono H.; Taniguchi T.; Shimokawa J.; Kitamura M.; Fukuyama T. J. Am. Chem. Soc. 2016, 138, 14578. |
| [12] | (m) Zhao J.-F.; Duan X.-H.; Yang H.; Guo L.-N. J. Org. Chem. 2015, 80, 11149. |
| [12] | (n) Yang H.; Duan X.-H.; Zhao J.-F.; Guo L.-N. Org. Lett. 2015, 17, 1998. |
| [12] | (o) Shen C.; Liu R.-R.; Fan R.-J.; Li Y.-L.; Xu T.-F.; Gao J.-R.; Jia Y.-X. J. Am. Chem. Soc. 2015, 137, 4936. |
| [13] | (a) Lukasevics L.; Cizikovs A.; Grigorjeva L. Org. Lett. 2020, 22, 2720. |
| [13] | (b) Fu L.-Y.; Ying J.; Qi X.; Peng J.-B.; Wu X.-F. J. Org. Chem. 2019, 84, 1421. |
| [13] | (c) Reddy C. B.; Ram S.; Kumar A.; Bharti R.; Das P. Chem.-Eur. J. 2019, 25, 4067. |
| [13] | (d) Bai X.-F.; Mu Q.-C.; Xu Z.; Yang K.-F.; Li L.; Zheng Z.-J.; Xia C.-G.; Xu L.-W. ACS Catal. 2019, 9, 1431. |
| [13] | (e) Ling F.; Ai C.; Lv Y.; Zhong W. Adv. Synth. Catal. 2017, 359, 3707. |
| [13] | (f) Han J.; Wang N.; Huang Z.-B.; Zhao Y.; Shi D.-Q. J. Org. Chem. 2017, 82, 6831. |
| [13] | (g) Tjutrins J.; Shao J. L.; Yempally V.; Bengali A. A.; Arndtsen B. A. Organometallics 2015, 34, 1802. |
| [13] | (h) Fujioka M.; Morimoto T.; Tsumagari T.; Tanimoto H.; Nishiyama Y.; Kakiuchi K. J. Org. Chem. 2012, 77, 2911. |
| [14] | (a) Cui W.-J.; Wu Z.-J.; Gu Q.; You S.-L. J. Am. Chem. Soc. 2020, 142, 7379. |
| [14] | (b) Jing K.; Wang X.-N.; Wang G.-W. J. Org. Chem. 2019, 84, 161. |
| [14] | (c) Li T.; Zhou C.; Yan X.; Wang J. Angew. Chem., Int. Ed. 2018, 57, 4048. |
| [14] | (d) Wu X.; Wang B.; Zhou S.; Zhou Y.; Liu H. ACS Catal. 2017, 7, 2494. |
| [14] | (e) Wang C.-Q.; Ye L.; Feng C.; Loh T. P. J. Am. Chem. Soc. 2017, 139, 1762. |
| [14] | (f) Hong S. Y.; Jeong J.; Chang S. Angew. Chem., Int. Ed. 2017, 56, 2408. |
| [14] | (g) Bechtoldt A.; Tirler C.; Raghuvanshi K.; Warratz S.; Kornhaa? C.; Ackermann L. Angew. Chem., Int. Ed. 2016, 55, 264. |
| [14] | (h) Ma W.; Ackermann L. ACS Catal. 2015, 5, 2822. |
| [14] | (i) Lu Y.; Wang H.-W.; Spangler J. E.; Chen K.; Cui P.-P.; Zhao Y.; Sun W.-Y.; Yu J.-Q. Chem. Sci. 2015, 6, 1923. |
| [14] | (j) Ye B.; Cramer N. Angew. Chem., Int. Ed. 2014, 53, 7896. |
| [14] | (k) Hyster T. K.; Ruhl K. E.; Rovis T. J. Am. Chem. Soc. 2013, 135, 5364. |
| [14] | (l) Zhu C.; Falck J. R. Org. Lett. 2011, 13, 1214. |
| [14] | (m) Wang F.; Song G.; Li X. Org. Lett. 2010, 12, 5430. |
| [15] | (a) Ratushnyy M.; Kvasovs N.; Sarkar S.; Gevorgyan V. Angew. Chem., Int. Ed. 2020, 59, 10316. |
| [15] | (b) Newman S. G.; Howell J. K.; Nicolaus N.; Lautens M. J. Am. Chem. Soc. 2011, 133, 14916. |
| [16] | (a) Zhang Z.; Su B.; Gong J.; Tao H.; Mai S. Org. Lett. 2024, 26, 1886. |
| [16] | (b) Liang M.; He M.; Zhong Z.; Wan B.; Du Q.; Mai S. Angew. Chem., Int. Ed. 2024, 63, e202400741. |
| [16] | (c) Yang Q.; Bai J.-X.; Yang H.; Yao Y.; Yao Y.-M.; Sun J.-W.; Sun S. Org. Lett. 2023, 25, 7148. |
| [16] | (d) Yang C.; Shi L.; Wang W.; Xia J.-B.; Li F. Org. Chem. Front. 2023, 10, 872. |
| [16] | (e) Yang C.; Shi L.; Wang F.; Su Y.; Xia J.-B.; Li F. ACS Catal. 2022, 12, 14194. |
| [16] | (f) Wang J.; Zheng G.; Li X. Chem. Commun. 2020, 56, 7809. |
| [17] | (a) Liu Z.; Sivaguru P.; Zanoni G.; Bi X. Acc. Chem. Res. 2022, 55, 1763. |
| [17] | (b) Jana S.; Guo Y.; Koenigs R. M. Chem.-Eur. J. 2021, 27, 1270. |
| [17] | (c) Feliciano A.; Vázquez J. L.; Benítez-Puebla L. J.; Velazco- Cabral I.; Cruz Cruz D.; Delgado F.; Vázquez M. A. Chem.-Eur. J. 2021, 27, 8233. |
| [17] | (d) Bhakta S.; Ghosh T. Tetrahedron 2021, 90, 132167. |
| [17] | (e) Zhou S.; Li J.; Schlangen M.; Schwarz H. Acc. Chem. Res. 2016, 49, 494. |
| [17] | (f) Jellema E.; Jongerius A. L.; Reek J. N. H.; Bruin B. D. Chem. Soc. Rev. 2010, 39, 1706. |
| [17] | (g) Li Z.; He C. Eur. J. Org. Chem. 2006, 2006, 4313. |
| [17] | (h) Liu S.-T.; Rajender Reddy K. Chem. Soc. Rev. 1999, 28, 315. |
| [18] | (a) Zhang Y.; Zhang J.-J.; Lou L.; Lin R.; Cramer N.; Wang S.-G.; Chen Z. Chem. Soc. Rev. 2024, 53, 3457. |
| [18] | (b) Pan Y.-S.; Qin X.; Yuan C.-K.; Lu Y. Chin. J. Org. Chem. 2023, 43, 924 (in Chinese). |
| [18] | (潘彦年, 秦萧, 袁成凯, 鲁艺, 有机化学, 2023, 43, 924.) |
| [18] | (c) Liu C.-X.; Yin S.-Y.; Zhao F.; Yang H.; Feng Z.; Gu Q.; You S.-L. Chem. Rev. 2023, 123, 10079. |
| [18] | (d) Mas-Roselló J.; Herraiz A. G.; Audic B.; Laverny A.; Cramer N. Angew. Chem., Int. Ed. 2021, 60, 13198. |
| [18] | (e) Rej S.; Chatani N. Angew. Chem., Int. Ed. 2019, 58, 8304. |
| [18] | (f) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908. |
| [19] | (a) Xie Y.; Xuan J. Chin. J. Org. Chem. 2022, 42, 4247 (in Chinese). |
| [19] | (谢阳, 宣俊, 有机化学, 2022, 42, 4247.) |
| [19] | (b) Wang J. Tetrahedron Lett. 2022, 108, 154135. |
| [19] | (c) Li S.; Zhou L. Chin. J. Org. Chem. 2022, 42, 3944 (in Chinese). |
| [19] | (李森, 周磊, 有机化学, 2022, 42, 3944.) |
| [19] | (d) Durka J.; Turkowska J.; Gryko D. ACS Sustainable Chem. Eng. 2021, 9, 8895. |
| [19] | (e) Zhao R.; Shi L. Angew. Chem., Int. Ed. 2020, 59, 12282. |
| [19] | (f) Green S. P.; Wheelhouse K. M.; Payne A. D.; Hallett J. P.; Miller P. W.; Bull J. A. Org. Process Res. Dev. 2020, 24, 67. |
| [19] | (g) Feng J.-J.; Yi X.-Y.; Fu Y.-F.; Yu Y.; Huang F. Chin. J. Org. Chem. 2019, 39, 3013 (in Chinese). |
| [19] | (封佳俊, 易享炎, 傅耀锋, 于杨, 黄菲, 有机化学, 2019, 39, 3013.) |
| [19] | (h) Khanal H. D.; Thombal R. S.; Maezono S. M. B.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 3185. |
| [19] | (i) Gao Y.-P.; Wang J.-B. Chin. J. Org. Chem. 2018, 38, 1275 (in Chinese). |
| [19] | (郜云鹏, 王剑波, 有机化学, 2018, 38, 1275.) |
| [19] | (j) Wang L.; Li Z.; Wan K.; Qu X.; Hu S.-Q.; Wang F. Chin. J. Org. Chem. 2016, 36, 889 (in Chinese). |
| [19] | (王亮, 李站, 万康, 瞿星, 胡思前, 王锋, 有机化学, 2016, 36, 889.) |
| [19] | (k) Zhu S.-F.; Zhou Q.-L. Natl. Sci. Rev. 2014, 1, 580. |
| [19] | (l) Tang M.; Xing D.; Cai M.-Q.; Hu W.-H. Chin. J. Org. Chem. 2014, 34, 1268 (in Chinese). |
| [19] | (唐敏, 邢栋, 蔡茂强, 胡文浩, 有机化学, 2014, 34, 1268.) |
| [19] | (m) Zhang Y.; Wang J. Eur. J. Org. Chem. 2011, 2011, 1015. |
| [19] | (n) Chiara J. L.; Suárez J. R. Adv. Synth. Catal. 2011, 353, 575. |
| [20] | (a) He Y.; Huang Z.; Wu K.; Ma J.; Zhou Y.-G.; Yu Z. Chem. Soc. Rev. 2022, 51, 2759. |
| [20] | (b) Zhao X.; Wang G.; Hashmi A. S. K. ChemCatChem 2021, 13, 4299. |
| [20] | (c) Pal K.; Volla C. M. R. Chem. Rec. 2021, 21, 4032. |
| [20] | (d) Wang F.-Y.; Zhang Z.-P.; Huang F. Chin. J. Org. Chem. 2021, 41, 144 (in Chinese). |
| [20] | (王飞雨, 张志朋, 黄菲, 有机化学, 2021, 41, 144.) |
| [20] | (e) Zhang H.-M.; Li L.-Z.; Shen F.-Q.; Cai T.; Shen R.-P. Chin. J. Org. Chem. 2020, 40, 873 (in Chinese). |
| [20] | (张慧苗, 李灵芝, 沈方旗, 蔡涛, 沈润溥, 有机化学, 2020, 40, 873.) |
| [20] | (f) Xiang Y.; Wang C.; Ding Q.; Peng Y. Adv. Synth. Catal. 2019, 361, 919. |
| [20] | (g) Ren Y.-Y.; Zhu S.-F.; Zhou Q.-L. Org. Biomol. Chem. 2018, 16, 3087. |
| [20] | (h) Zhu S.-F.; Zhou Q.-L. Acc. Chem. Res. 2012, 45, 1365. |
| [20] | (i) Doyle M. P.; Duffy R.; Ratnikov M.; Zhou L. Chem. Rev. 2010, 110, 704. |
| [21] | (a) Chen Z.-L.; Xie Y.; Xuan J. Eur. J. Org. Chem. 2022, 2022, e202201066. |
| [21] | (b) Tang X.-T.; Yang F.; Zhang T.-T.; Liu Y.-F.; Liu S.-Y.; Su T.-F.; Lv D.-C.; Shen W.-B. Catalysts 2020, 10, 350. |
| [21] | (c) Díaz-Requejo M. M.; Pérez P. J. J. Organomet. Chem. 2005, 690, 5441. |
| [21] | (d) Che C.-M.; Huang J.-S. Coord. Chem. Rev. 2002, 231, 151. |
| [22] | (a) Yang Y.; Arnold F. H. Acc. Chem. Res. 2021, 54, 1209. |
| [22] | (b) Kumar S.; Nunewar S.; Oluguttula S.; Nanduri S.; Kanchupalli V. Org. Biomol. Chem. 2021, 19, 1438. |
| [22] | (c) Jha N.; Khot N. P.; Kapur M. Chem. Rec. 2021, 21, 4088. |
| [22] | (d) Xia Y.; Qiu D.; Wang J. Chem. Rev. 2017, 117, 13810. |
| [23] | (a) Chen X.; Xiao F.; He W.-M. Org. Chem. Front. 2021, 8, 5206. |
| [23] | (b) Dhungana R. K.; Sapkota R. R.; Niroula D.; Giri R. Chem. Sci. 2020, 11, 9757. |
| [23] | (c) Hazelden I. R.; Ma X.; Langer T.; Bower J. F. Angew. Chem., Int. Ed. 2016, 55, 11198. |
| [23] | (d) Hanley P. S.; Hartwig J. F. Angew. Chem., Int. Ed. 2013, 52, 8510. |
| [23] | (e) Minatti A.; Mu?iz K. Chem. Soc. Rev. 2007, 36, 1142. |
| [24] | (a) Gao J.; Luo K.; Wei X.; Wang H.; Liu H.; Zhou Y. Org. Lett. 2023, 25, 3341. |
| [24] | (b) Sihag P.; Chakraborty T.; Jeganmohan M. Org. Lett. 2023, 25, 1257. |
/
| 〈 |
|
〉 |