综述与进展

单/二/三氟甲氧基化试剂的制备方法的研究进展

  • 郑威 ,
  • 刘凤雪 ,
  • 赵红琼 ,
  • 许颖 ,
  • 陈宁 ,
  • 刘颖杰
展开
  • 哈尔滨商业大学药学院 哈尔滨 150076

收稿日期: 2024-04-30

  修回日期: 2024-05-23

  网络出版日期: 2024-06-13

基金资助

2023年度哈尔滨商业大学“青年科研创新人才”培育计划; 高校学科协同创新成果建设培育(LJGXCG2022-086); 黑龙江省中医药科研(ZYW2023-075)

Recent Progress on Methods for the Preparation of Mono/Di/Trifluoromethoxylation Reagents

  • Wei Zheng ,
  • Fengxue Liu ,
  • Hongqiong Zhao ,
  • Ying Xu ,
  • Ning Chen ,
  • Yingjie Liu
Expand
  • School of Pharmacy, Harbin University of Commerce, Harbin 150076
*Corresponding authors. E-mail:;

Received date: 2024-04-30

  Revised date: 2024-05-23

  Online published: 2024-06-13

Supported by

2023 Youth Research and Innovation Talent Training Program of Harbin University of Commerce; University Discipline Collaborative Innovation Achievements Construction Project(LJGXCG2022-086); Scientific Research Project on Traditional Chinese Medicine in Heilongjiang Province(ZYW2023-075)

摘要

含氟有机分子在制药、农业化学和材料科学领域具有广泛应用. 在制药领域, 引入含氟甲氧基基团可提高药物的生物利用度、代谢稳定性, 并调控分子的立体化学和电子结构, 从而改善药物疗效和选择性; 在农业领域, 含氟有机化合物具有防虫和杀菌作用; 在材料科学中, 含氟甲氧基化合物因其优异的电化学性能和热稳定性, 广泛应用于电池、涂层和催化剂的合成与改性. 因此, 如何高效地引入含氟甲氧基基团成为有机化学领域的研究热点. 对单氟甲氧基(OCH2F)、二氟甲氧基(OCF2H)、三氟甲氧基(OCF3)试剂的制备方法以及三氟甲氧基试剂的发展进行了综述.

本文引用格式

郑威 , 刘凤雪 , 赵红琼 , 许颖 , 陈宁 , 刘颖杰 . 单/二/三氟甲氧基化试剂的制备方法的研究进展[J]. 有机化学, 2024 , 44(11) : 3321 -3334 . DOI: 10.6023/cjoc202403011

Abstract

Fluorine-containing organic molecules have broad applications in the fields of pharmaceuticals, agrochemicals, and material science. In the pharmaceutical industry, the incorporation of fluorine-containing methoxy groups can enhance the bioavailability and metabolic stability of drugs, while also modulating the stereochemistry and electronic structure of the molecules, thereby improving drug efficacy and selectivity. In the agricultural sector, fluorine-containing organic compounds exhibit significant insecticidal and fungicidal properties. In materials science, fluorine-containing methoxy compounds are widely used in the synthesis and modification of materials, such as batteries, coatings, and catalysts due to their excellent electrochemical performance and thermal stability. Consequently, the efficient introduction of fluorine-containing methoxy groups has become a focal point of research in organic chemistry. This review provides an overview of the preparation methods for monofluoromethoxy (OCH2F), difluoromethoxy (OCF2H), and trifluoromethoxy (OCF3) reagents, as well as the development of trifluoromethoxy reagents.

参考文献

[1]
Ni C.; Hu J. Chem. Soc. Rev. 2016, 45, 5441.
[2]
Liang T.; Neumann C. N.; Ritter T. Angew. Chem., nt. Ed. 2013, 52, 8214.
[3]
Cheng M.; Guo C.; Gross M. L. Angew. Chem., nt. Ed. 2020, 59, 5880.
[4]
Hu J. B. Acta Chim. Sinica 2024, 82, 103 (in Chinese).
[4]
(胡金波, 化学学报, 2024, 82, 103.)
[5]
(a) Leroux F.; Jeschke P.; Schlosser M. Chem. Rev. 2005, 105, 827.
[5]
(b) Jeschke P.; Baston E.; Leroux F. R. Mini Rev. Med. Chem. 2007, 7, 10274.
[5]
(c) Manteau B.; Pazenok S.; Vors J. P.; Leroux F. R. J. Fluorine Chem. 2010, 131, 140.
[6]
Donohue S. R.; Krushinski J. H.; Pike V. W.; Chernet E.; Phebus L.; Chesterfield A. K.; Felder C. C.; Halldin C.; Schaus J. M. J. Med. Chem. 2008, 51, 5833.
[7]
Xing L.; Blakemore D. C.; Narayanan A.; Unwalla R.; Lovering F.; Denny R. A.; Zhou H.; Bunnage M. E. Chem. Med. Chem. 2015, 10, 715.
[8]
Dolbier W. R. Jr; Battiste M. A. Chem. Rev. 2003, 103, 1071.
[9]
Zhu J.; Liu Y.; Shen Q. Angew. Chem., nt. Ed. 2016, 55, 9050.
[10]
Si Y.; Tang P. Chin. J. Chem. 2023, 41, 2179.
[11]
Leo A.; Hansch C.; Elkins D. Chem. Rev. 1971, 71, 525.
[12]
Hansch C.; Leo A.; Taft R. W. Chem. Rev. 2002, 91, 165.
[13]
Federsel D.; Herrmann A.; Christen D.; Sander S.; Willner H.; Oberhammer H. Mol. Struct. 2001, 567, 127.
[14]
Li X; Blakemore D. C.; Arjun N.; Ray U.; Frank L.; Aldrin R. D.; Zhou H. Y.; Bunnage M. E. ChemMedChem 2015, 10, 715.
[15]
Iwata R.; Furumoto S.; Pascali C.; Anna P. B.; Ishiwata K. J. Labelled Compd. Radiopharm. 2003, 46, 555.
[16]
Iwata R.; Pascali C.; Bogni A.; Furumoto S.; Terasaki K.; Yanai K. Appl. Radiat. Isot. 2002, 57, 347.
[17]
Ramkumar N.; Sperga A.; Belyakov S.; Mishnev A.; Zacs D.; Veliks J. Adv. Synth. Catal. 2023, 365, 1405.
[18]
Sperga A.; Melngaile R.; Kazia A.; Belyakov S.; Veliks J. J. Org. Chem. 2021, 86, 3196.
[19]
(a) Sperga A.; Kazia A.; Veliks J. Org. Biomol. Chem. 2021, 19, 2688.
[19]
(b) Sperga A.; Zacs D.; Veliks J. Org. Lett. 2022, 24, 4474.
[20]
Bertoli G.; Martínez á. M.; Goebel J. F.; Belmonte D.; Sivendran N.; Goo?en L. Angew. Chem. 2022, 135, 1405.
[21]
Ni C.; Hu J. Synthesis 2014, 46, 842.
[22]
Li J.; Smith D.; Krishnananthan S. Org. Process Res. Dev. 2012, 16, 156.
[23]
Tao Z.-F.; Sowin T. J.; Lin N.-H. Synlett 2007, 18, 2855.
[24]
Lee W. J.; Zheng W.; Morales-Rivera A. C.; Liu P.; Ngai M. Y. Chem. Sci. 2019, 10, 3217.
[25]
Lee J. W.; Lim S.; Maienshein D. N.; Liu P.; Ngai M. Y. Angew. Chem. 2020, 132, 21659.
[26]
Zheng W. J.; Lee J. W.; Morales-Rivera C. A.; Liu P.; Ngai M. Y. Angew. Chem., nt. Ed. 2018, 57, 13795.
[27]
Lin D.; Prakash G. K. S. Org. Lett. 2022, 24, 7707.
[28]
Lee K. N.; Lee J. W.; Ngai M. Y. Tetrahedron 2018, 74, 7127.
[29]
Huang C. H.; Liang T.; Harada S.; Lee E.; Ritter T. J. Am. Chem. Soc. 2011, 133, 13308.
[30]
Guo S.; Cong F.; Guo R.; Wang L.; Tang P. P. Nat. Chem. 2017, 9, 546.
[31]
Türksoy A.; Leonori D.; Klankermayer J.; Schoenebeck F. Ph.D. Dissertation, Universit?tsbibliothek der RWTH Aachen, Yozgat 2023.
[32]
Jiang X.; Tang P. Chin. J. Chem. 2021, 39, 255.
[33]
Zhou M.; Ni C. F.; He Z. B.; Hu J. B. Org. Lett. 2016, 18, 3754.
[34]
Umemoto T.; Adachi K.; Ishihara S. J. Org. Chem. 2007, 72, 6905.
[35]
Jelier B. J.; Howell J. L.; Montgomery C. D.; Leznoff D. B.; Friesen C. M. Angew. Chem., nt. Ed. 2015, 54, 2945.
[36]
Tlili A.; Toulgoat F.; Billard T. Angew. Chem., nt. Ed. 2016, 55, 11726.
[37]
Besset T.; Jubault P.; Pannecoucke X.; Poisson T. Org. Chem. Front. 2016, 3, 1004.
[38]
Hao B. Y.; Han Y. P.; Zhang Y.; Liang Y. M. Org. Biomol. Chem. 2023, 21, 4926.
[39]
Pelaez W. J.; Arguello G. A. Tetrahedron Lett. 2010, 51, 5242.
[40]
Kellogg K. B.; Cady G. H. J. Am. Chem. Soc. 1948, 70, 3986.
[41]
Porter R. S.; Cady G. H. J. Am. Chem. Soc. 1957, 79, 5625.
[42]
Barton D. H.; Hesse R. H.; Jackman G. P.; Pechet M. M. J. Chem. Soc., Perkin Trans. 1 1977, 2604.
[43]
Francesco V.; Sansotera M.; Navarrini W. J. Fluorine Chem. 2013, 155, 2.
[44]
Schack C. J.; Maya W. J. Am. Chem. Soc. 1969, 91, 2902.
[45]
Porter R. S.; Cady G. H. J. Am. Chem. Soc. 1957, 79, 5628.
[46]
Ginsburg V. A.; Vlasova E. S.; Vasil'eva M. N.; Mirzabekova N. Y. S.; Makarov S. P.; Shchekotikhin A. I.; Yakubovich A. Y. Dokl. Akad. Nauk 1963, 149, 97.
[47]
Thompson P. G. J. Am. Chem. Soc. 1967, 89, 4316.
[48]
Anderson L. R.; Fox W. B. J. Am. Chem. Soc. 1967, 89, 4313.
[49]
Matou?ek V.; Pietrasiak E.; Sigrist L.; Czarniecki B.; Togni A. Eur. J. Org. Chem. 2014, 2014, 3087.
[50]
Liang A.; Han S.; Liu Z.; Wang L.; Li J.; Zou D.; Wu Y.; Wu Y. Chem. Eur. J. 2016, 22, 5102.
[51]
Yuan W. J.; Tong C. L.; Xu X. H.; Qing F. L. J. Org. Chem. 2023, 88, 4434.
[52]
Jelier B. J.; Tripet P. F.; Pietrasiak E.; Franzoni I.; Jeschke G.; Togni A. Angew. Chem., nt. Ed. 2018, 57, 13784.
[53]
Zheng W.; Morales-Rivera C. A.; Lee J. W.; Liu P.; Ngai M. Y. Angew. Chem. 2018, 130, 9793.
[54]
Zheng W.; Lee J. W.; Morales-Rivera C. A.; Liu P.; Ngai M. Y. Angew. Chem., Int. Ed. 2018, 57, 13795.
[55]
Huang C.; Liang T.; Harada S.; Lee E.; Ritter T. J. Am. Chem. Soc. 2011, 133, 13308.
[56]
Chen S.; Huang Y.; Fang X.; Li H.; Zhang Z.; Hor T. A.; Weng Z. Dalton Trans. 2015, 44, 19682.
[57]
Guo S.; Cong F.; Guo R.; Wang L.; Tang P. Nat. Chem. 2017, 9, 546.
[58]
Koller R.; Huchet Q.; Battaglia P.; Welch J. M.; Togni A. Chem. Commun. 2009, 5993.
[59]
Li Y.; Yang Y.; Xin J.; Tang P. Nat. Commun. 2020, 11, 755.
[60]
Huang W. C.; Wan X. L.; Shen Q. L. Angew. Chem. 2017, 129, 12148.
[61]
Marrec O.; Billard T.; Vors J.-P.; Pazenok S.; Longlois B. R. J. Fluorine Chem. 2010, 131, 200.
[62]
Chen D.; Lu L.; Shen Q. Org. Chem. Front. 2019, 6, 1801.
[63]
Olah G.A.; Ohyama T. Synthesis 1976 5, 319.
[64]
Noftle R. E. Inorg. Nucl. Chem. Lett. 1980, 16, 195.
[65]
Noftle R. E.; Cady G. H. Inorg. Chem. 1965, 4, 1010.
[66]
Katsuhara Y.; DesMarteau D. D. J. Am. Chem. Soc. 1980, 102, 2681.
[67]
Kobayashi Y.; Yoshida T.; Kumadaki I. Tetrahedron Lett. 1979, 20, 3865.
[68]
Engelbrecht V. A.; Tschager E. Z. Anorg. Allg. Chem. 1977, 433, 19.
[69]
Hassani M.O.; Germain A.; Brunel D.; Commeyras A. Tetrahedron Lett. 1981, 22, 65.
[70]
Taylor S. L.; Martin J. C. J. Org. Chem. 1987, 52, 4147.
[71]
Zhang Q. W.; Hartwig J. F. Chem. Commun. 2018, 54, 10124.
[72]
Zhou M.; Ni C. F.; Zeng Y. W.; Hu J. B. J. Am. Chem. Soc. 2018, 140, 6801.
[73]
Turksoy A.; Scattolin T.; Bouayad-Gervais S.; Schoenebeck F. Chem.-Eur. J. 2020, 26, 2183.
[74]
(a) Chen C.; Chen P.; Liu G. J. Am. Chem. Soc. 2015, 137, 15648.
[74]
(b) Chen C.; Luo Y.; Fu L.; Chen P.; Lan Y.; Liu G. J. Am. Chem. Soc. 2018, 140, 1207.
[74]
(c) Zhang C.-P.; Vicic D. A. Organometallics 2012, 31, 7812.
[74]
(d) Chen S.; Huang Y.; Fang X.; Li H.; Zhang Z.; Hor T. S.; Weng Z. Dalton Trans. 2015, 44, 19682.
[74]
(e) Zhang W.; Chen J.; Lin J. H.; Xiao J. C.; Gu Y. C. iScience 2018, 5, 110.
[74]
(f) Zha G. F.; Han J. B.; Hu X. Q.; Qin H. L.; Fang W. Y.; Zhang C. P. Chem. Commun. 2016, 52, 7458.
[74]
(g) Wang Q.; Zhang X.; Sorochinsky A. E.; Butler G.; Han J.; Soloshonok V. A. Symmetry 2021, 13, 2380.
[74]
(h) Cong F.; Wei Y.; Tang P. Chem. Commun. 2018, 54, 4473.
[74]
(i) Yang H.; Wang F.; Jiang X.; Zhou Y.; Xu X.; Tang P. Angew. Chem., nt. Ed. 2018, 57, 13266.
[74]
(j) Wang F.; Xu P.; Cong F.; Tang P. Chem. Sci. 2018, 9, 8836.
[75]
Kolomeitsev A. A.; Vorobyev M.; Gillandt H. Tetrahedron Lett. 2008, 49, 449.
[76]
Petzold D.; Nitschke P.; Brandl F.; Scheidler V.; Dick B.; Gschwind R. M.; K?nig B. Chem.-Eur J. 2019, 25, 361.
[77]
Duran-Camacho G.; Ferguson D. M.; Kampf J. W.; Bland D. C.; Sanford M. S. Org. Lett. 2021, 23, 5138.
[78]
Lu Z.; Kumon T.; Hammond G. B.; Umemoto T. Angew. Chem., nt. Ed. 2021, 60, 16171.
[79]
Umemoto T.; Zhang B.; Zhu T.; Zhou X.; Zhang P.; Hu S.; Li Y. J. Org. Chem. 2017, 82, 7708.
[80]
Kondo H.; Maeno M.; Hirano K.; Shibata N. Chem. Commun. 2018, 54, 5522.
[81]
(a) Behenna D. C.; Liu Y.; Yurino T.; Kim J.; White D. E.; Virgil S. C.; Stoltz B. M. Nat. Chem. 2012, 4, 130.
[81]
(b) Korch K. M.; Eidamshaus C.; Behenna D. C.; Nam S.; Horne D.; Stoltz B. M. Angew. Chem., nt. Ed. 2015, 54, 179.
[81]
(c) Numajiri Y.; JiménezOsés G.; Wang B.; Houk K. N.; Stoltz B. M. Org. Lett. 2015, 17, 1082.
[81]
(d) Kita Y.; Numajiri Y.; Okamoto N.; Stoltz B. M. Tetrahedron 2015, 71, 6349.
[82]
Liu J. B.; Xu X. H.; Qing F. L. Org. Lett. 2015, 17, 5048.
[83]
Newton J. J.; Jelier B. J.; Meanwell M.; Martin R. E.; Britton R.; Friesen C. M. Org. Lett. 2020, 22, 1785.
[84]
Kolomeitsev A. A.; Vorobyev M.; Gillandt H. Tetrahedron Lett. 2007, 49, 449.
[85]
Chen D.; Luo Y.; Lu L.; Shen Q. Organometallics 2024, DOI: 10.1021/acs.organomet.4c00073.
文章导航

/