研究论文

基于四苯乙烯的柔性发光材料的构筑及性能研究

  • 王源浩 ,
  • 孙钰凯 ,
  • 刘昱迒 ,
  • 张照明 ,
  • 颜徐州
展开
  • a 上海交通大学化学化工学院 上海 200240
    b 上海交通大学变革性分子前沿科学中心 上海 200240
† 共同第一作者.

收稿日期: 2024-03-30

  修回日期: 2024-05-23

  网络出版日期: 2024-06-13

基金资助

聚烯烃催化技术与高性能材料国家重点实验室和上海市聚烯烃催化技术重点实验室(SKL-LCTP-202301); 西安交通大学金属材料强度国家重点实验室(20222409)

Construction and Properties of Flexible Light-Emitting Materials Based on Tetraphenylethylene

  • Yuanhao Wang ,
  • Yukai Sun ,
  • Yuhang Liu ,
  • Zhaoming Zhang ,
  • Xuzhou Yan
Expand
  • a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
    b Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240
† The authors contributed equally to this work.

Received date: 2024-03-30

  Revised date: 2024-05-23

  Online published: 2024-06-13

Supported by

State Key Laboratory of Polyolefins and Catalysis and Shanghai Key Laboratory of Catalysis Technology for Polyolefins(SKL-LCTP-202301); State Key Laboratory for Mechanical Behavior of Materials(20222409)

摘要

柔性发光材料凭借在不同外力作用下仍能保持形状完整和发光性能的特点, 在技术生产的多个领域有着广泛的应用. 利用四苯基乙烯作为发色基团, 利用硫醇与双键高效点击聚合的方法, 构筑了一系列荧光强度可调的柔性发光材料. 通过调节参与聚合的不同官能度硫醇单体的比例, 制备了机械性能优异的聚合物网络, 其断裂伸长率为377%, 断裂应力为33.0 MPa, 韧性可达90.6 MJ/m3. 通过外力诱导分子构象变化, 发现材料的荧光量子产率会随着拉伸程度的增加而升高. 同时, 该材料在溶胀后会发生荧光淬灭, 挥发溶剂后荧光重新出现, 符合聚集诱导发光的规律. 基于以上研究, 该柔性发光材料的机械性能优秀且荧光强度可调, 因此有望在发光传感器、信号探测器等方向开展实际应用.

本文引用格式

王源浩 , 孙钰凯 , 刘昱迒 , 张照明 , 颜徐州 . 基于四苯乙烯的柔性发光材料的构筑及性能研究[J]. 有机化学, 2024 , 44(8) : 2538 -2544 . DOI: 10.6023/cjoc202403051

Abstract

Flexible light-emitting materials find broad applications across various realms of technical production owing to their capacity to uphold structural integrity and luminescent efficacy amidst diverse external forces. In this study, a range of flexible light-emitting materials featuring tunable fluorescence intensity have been synthesized with tetraphenylethylene as the chromophore group, employing a highly efficient thiol-ene click polymerization. By adjusting the ratio of thiol monomers with varying functional degrees involved in polymerization, a polymer network with superior mechanical properties is achieved. This network exhibits an elongation at break of 377%, a fracture stress of 33.0 MPa, and an impressive toughness of up to 90.6 MJ/m3. Because of the changes of molecular conformation owing to the external forces, the fluorescence quantum yield of the materials rises in tandem with the degree of stretching. Additionally, fluorescence quenching is observed following swelling, and the fluorescence re-emerging upon solvent volatilization, aligning with the principles of aggregation-induced emission. Drawing from the aforementioned study, this flexible light-emitting materials exhibit exceptional mechanical characteristics and tunable fluorescence intensity, poised to find practical utility in the realm of light-emitting sensors and signal detection.

参考文献

[1]
Jeon, K. H.; Park, J. W. Macromolecule. 2022, 55, 8311.
[2]
Jang, B.; Won, S.; Kim, J.; Kim, J.; Oh, M.; Lee, H.-J.; Kim, J.-H. Adv. Funct. Mater. 2022, 32, 2113299.
[3]
Lee, Y.; Chung, J. W.; Lee, G. H.; Kang, H.; Kim, J.-Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S.-G.; Jung, J. Y.; Lee, D.-W.; Gam, S.; Hahm, S. G.; Kuzumoto, Y.; Kim, S. J.; Bao, Z.; Hong, Y.; Yun, Y.; Kim, S. Sci. Adv. 2021, 7, eabg9180. DOI: 10.1126/sciadv.abg9180
[4]
Zhang, P.; Lei, I. M.; Chen, G. D.; Lin, J. S.; Chen, X. M.; Zhang, J. J.; Cai, C. C.; Liang, X. Y.; Liu, J. Nat. Commun. 2022, 13, 4775.
[5]
Lee, Y.; Kim, D. S.; Jin, S. W.; Lee, H.; Jeong, Y. R.; You, I.; Zi, G.; Ha, J. S. Chem. Eng. J. 2022, 427, 130858.
[6]
Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Adv. Mater. 2016, 28, 930.
[7]
Xu, H.; Han, P. B.; Qin, A. J.; Tang, B. Z. Acta Chim. Sinic. 2023, 81, 1420 (in Chinese).
[7]
(徐赫, 韩鹏博, 秦安军, 唐本忠, 化学学报, 2023, 81, 1420.)
[8]
Liu, B.; Chen, B. K. Acta Chim. Sinic. 2022, 80, 929 (in Chinese).
[8]
(刘斌, 陈磅宽, 化学学报, 2022, 80, 929.)
[9]
Ou, X. Y.; Qin, X.; Huang, B. L.; Zan, J.; Wu, Q. X.; Hong, Z. Z.; Xie, L. L.; Bian, H. Y.; Yi, Z. G.; Chen, X. F.; Wu, Y. M.; Song, X. R.; Li, J.; Chen, Q. S.; Yang, H. H.; Liu, X. G. Natur. 2021, 590, 410.
[10]
Xie, X. Y.; Zhang, Z. L.; Jiang, Q.; Zheng, S. T.; Yun, Y.; Wu, H.; Li, C. B.; Tian, F.; Su, M.; Li, F. Y. ACS Nan. 2022, 16, 20094.
[11]
Zhao, R. Q.; Wang, C.; Huang, K.; Li, L.; Fan, W. R.; Zhu, Q. X.; Ma, H. H.; Wang, X. W.; Wang, Z. H.; Huang, W. J. Am. Chem. Soc. 2023, 145, 26532.
[12]
Zhang, H. Y.; Jia, S. X.; Yin, D.; Feng, J. Chin. J. Lumin. 2023, 44, 1606 (in Chinese).
[12]
(张浩洋, 贾士鑫, 银达, 冯晶, 发光学报, 2023, 44, 1606.)
[13]
Liu, S. J.; Tang, B. Z. Acta Polym. Sinic. 2021, 52, 456 (in Chinese).
[13]
(刘顺杰, 唐本忠, 高分子学报, 2021, 52, 456.)
[14]
Han, P. B.; Qin, A. J. Chin. J. Org. Chem. 2023, 43, 2254 (in Chinese).
[14]
(韩鹏博, 秦安军, 有机化学, 2023, 43, 2254.)
[15]
Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.
[16]
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
[17]
Liu, L.; Hao, T. T.; Wu, W. H.; Yang, C. Chin. J. Org. Chem. 2023, 43, 2189 (in Chinese).
[17]
(刘铃, 浩涛涛, 伍晚花, 杨成, 有机化学, 2023, 43, 2189.)
[18]
Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F. Chem. Soc. Rev. 2011, 40, 3483.
[19]
Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.
[20]
Cai, Y.; Du, L.; Samedov, K.; Gu, X.; Qi, F.; Sung, H. H. Y.; Patrick, B. O.; Yan, Z. P.; Jiang, X. F., Zhang, H. K.; Lam, J. W. Y.; Williams, I. D.; Phillips, D. L.; Qin, A. J.; Tang, B. Z. Chem. Sci. 2018, 9, 4662.
[21]
Qiu, Z.; Chu, E. K. K.; Jiang, M.; Gui, C.; Xie, N.; Qin, W.; Alam, P.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Macromolecule. 2017, 50, 7620.
[22]
Han, T.; Gui, C.; Lam, J. W. Y.; Jiang, M. J.; Xie, N.; Kwok, R. T. K.; Tang, B. Z. Macromolecule. 2017, 50, 5807.
[23]
Chi, W. W.; Yuan, W.; Du, J.; Han, T.; Li, H. K.; Li, Y. F.; Tang, B. Z. Macromol. Rapid Commun. 2018, 39, 1800604
[24]
Yu, X.; Chen, H.; Shi, X.; Albouy, P. A.; Guo, J.; Hu, J.; Li, M. H. Mater. Chem. Fron.. 2018, 2, 2245.
[25]
Lu, H. M.; Ma, L. M. C.; Ma, H. C. Chin. J. Org. Chem. 2023, 43, 4075 (in Chinese).
[25]
(鲁会名, 马拉毛草, 马恒昌, 有机化学, 2023, 43, 4075.)
[26]
Yang, Y.; Zhang, S.; Zhang, X. Q.; Gao, L. C.; Wei, Y.; Ji, Y. Nat. Commun. 2019, 10, 3165.
[27]
Khorloo, M.; Yu, X.; Cheng, Y.; Zhang, H.; Yu, S.; Lam, J. W. Y.; Zhu, M.; Tang, B. Z. ACS Nan. 2021, 15, 1397.
[28]
Liu, G. J.; Feng, G. L.; Li, X. F.; Liu, Y. C.; Zhou, W.; Ji, Y. M.; Zhang, Y.; Xing, G. W. Sci. China Chem. 2022, 52, 880 (in Chinese).
[28]
(刘广建, 冯改丽, 李夏芬, 刘怡晨, 周微, 及燕铭, 张媛, 邢国文, 中国科学:化学, 2022, 52, 880.)
[29]
Zhao, Y. Q.; Zhang, X.; Yang, Y. R.; Zhu, L. P.; Zhou, Y. Acta Chim. Sinic. 2024, 82, 265 (in Chinese).
[29]
(赵玉强, 张霞, 杨芸如, 朱立平, 周莹, 化学学报, 2024, 82, 265.)
[30]
Zeng, C. Y.; Hu, P.; Wang, B. Q.; Fang, W. Y.; Zhao, K. Q.; Donnio, B. Acta Chim. Sinic. 2023, 81, 469 (in Chinese).
[30]
(曾崇洋, 胡平, 汪必琴, 方文彦, 赵可清, Donnio, B. 化学学报, 2023, 81, 469.)
[31]
Feng, X. C.; Zhu, L. L.; Yue, B. B. Chin. J. Chem. 2022, 80, 647 (in Chinese).
[31]
(冯锡成, 朱亮亮, 岳兵兵, 化学学报, 2022, 80, 647.)
[32]
Zeng, C. Y.; Hu, P.; Wang, B. Q.; Fang, W. Y.; Zhao, K. Q. Chin. J. Org. Chem. 2023, 43, 3287 (in Chinese).
[32]
(曾崇洋, 胡平, 汪必琴, 方文彦, 赵可清, 有机化学, 2023, 43, 3287.)
[33]
Zhang, L. L.; Wang, Y. Y.; Zhu, G. N.; Dai, W. B.; Zhao, Z. X.; Zhao, Y.; Zhi, J. G.; Dong, Y. P. Acta Chim. Sinic. 2022, 80, 282 (in Chinese).
[33]
(张璐璐, 王媛媛, 朱贵楠, 戴文博, 赵紫璇, 赵盈, 支俊格, 董宇平, 化学学报, 2022, 80, 282.)
[34]
Wang, Y. T.; Liu, X. Q.; Li, H. K.; Liu, X. D.; Wang, L.; Liu, Y. Chin. J. Chem. 2022, 40, 2393.
[35]
Guo, X. M.; Yuan, P. S.; Qiao, X. F.; Yang, D. Z.; Dai, Y. F.; Sun, Q.; Qin, A. J.; Tang, B. Z.; Ma, D. G. Adv. Funct. Mate.. 2020, 30, 1908704.
[36]
Liu, Y. H.; Guo, Z. W.; Guo, Y. C.; Li, G. F.; Yang, S. B.; Yan, X. Z.; Shen, Y.; Wang, J. B. Chin. Chem. Lett. 2023, 34, 108531.
[37]
Wang, S.; Chen, C.; Wu, J. M.; Zhang, J. Y.; Lam, J. W. Y.; Wang, H. Y.; Chen, L.; Tang, B. Z. Sci. China Chem. 2022, 65, 870.
[38]
Jiang, Y.; Ma, J. H.; Ran, Z. Y.; Zhong, H. Q.; Zhang, D. H.; Hadjichristidis, N. Angew. Chem., Int. Ed. 2022, 61, e202208516.
[39]
Jiang, Y.; Ran, Z. Y.; Wu, Y. F.; Zhang, M.; Ma, Y.; Zhang, D. H. Chem. Commun. 2023, 59, 12423.
[40]
Zhao, J.; Zhang, Z. M.; Wang, C. Y.; Yan, X. Z. CCS Chem. 2024, 6, 41.
[41]
Yu, P.; Huang, Q. R.; Wang, Y.; Peng, W.; Jia, Z. C.; Wang, H. Y.; Ma, J. J.; Wang, C. Y.; Yan, X. Z. Chin. J. Chem. 2024, 42, 516.
[42]
Ma, S. Y.; Zhang, X. L.; Gong, L.; Zhan, S. P.; Hou, W. M.; Lu, C. L. Mater. Rep. 2021, 35, 566 (in Chinese).
[42]
(马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰, 材料导报, 2021, 35, 566.)
[43]
Zhang, Y. H.; Nie, F.; Zhou, L.; Wang, X. F.; Liu, Y.; Huo, Y. P.; Chen, W. C.; Zhao, Z. J. Chin. J. Org. Chem. 2023, 43, 3876 (in Chinese).
[43]
(张越华, 聂飞, 周路, 王晓烽, 刘源, 霍延平, 陈文铖, 赵祖金, 有机化学, 2023, 43, 3876.)
[44]
Gui, Y. X.; Chen, K. Y.; Sun, Y.; Tan, Y. H.; Luo, W. S.; Zhu, D. X.; Xiong, Y.; Yan, D. Y.; Wang, Y.; Tang, B. Z. Chin. J. Chem. 2023, 41, 1249.
[45]
Chen, Y. J.; Pu, M. Q.; Wu, L. T.; Sun, X. L.; Wan, W. M. Chin. J. Chem. 2023, 41, 1705.
[46]
Zhang, Z. M.; Zhao, J.; Yan, X. Z. Acta Polym. Sinic. 2022, 53, 691 (in Chinese).
[46]
(张照明, 赵骏, 颜徐州, 高分子学报, 2022, 53, 691.)
[47]
Wang, Y. M.; Zhang, H.; Zhang, Z. M.; Zhao, J.; Bai, R. X.; Liu, Y. H.; Zhang, X. H.; Yan, X. Z. Aggregat. 2022, 3, e206. DOI: https://doi.org/10.1002/agt2.206.
文章导航

/