机械力化学促进给-受体环丙烷与吲哚-2-二芳甲醇傅-克烷基化反应
收稿日期: 2024-04-06
修回日期: 2024-05-20
网络出版日期: 2024-06-13
基金资助
国家自然科学基金(22261036); 广西自然科学基金(2020GXNSFAA159096)
Mechanochemistry Enabled Friedel-Crafts Alkylation Reactions of Donor-Acceptor Cyclopropanes with 2-Indolymethanols
Received date: 2024-04-06
Revised date: 2024-05-20
Online published: 2024-06-13
Supported by
National Natural Science Foundation of China(22261036); Guangxi Natural Science Foundation(2020GXNSFAA159096)
梁金少 , 阮丽红 , 石栩溶 , 陈樱枝 , 宋楚焕 , 肖军安 , 刘志平 . 机械力化学促进给-受体环丙烷与吲哚-2-二芳甲醇傅-克烷基化反应[J]. 有机化学, 2024 , 44(11) : 3437 -3445 . DOI: 10.6023/cjoc202404006
Mechanochemical synthesis of 3-substituted 2-indolymethanols through scandium(Ⅲ)/palladium(Ⅱ) synergistic catalyzed Friedel-Crafts alkylations of donor-acceptor cyclopropanes and 2-indolymethanols has been developed. A wide broad of 3-substituted 2-indolymethanols have been afforded in moderate to excellent yields. This strategy has the advantage of short reaction time, wide substrate scope, mild reaction conditions, and so on. The synthetic utility was further demonstrated by gram-scale reaction and derivatization of the desired product.
| [1] | (a) Do J.; Friscic T. ACS Cent. Sci. 2017, 3, 13. |
| [1] | (b) Nicholson W. I.; Barreteau F.; Leitch J. A.; Payne R.; Priestley I.; Godineau E.; Battilocchio C.; Browne D. L. Angew. Chem., Int. Ed. 2021, 60, 21868. |
| [1] | (c) Nicholson W. I.; Howard J. L.; Magri G.; Seastram A. C.; Khan A.; Bolt R. R. A.; Morrill L. C.; Richards E.; Browne D. L. Angew. Chem., Int. Ed. 2021, 60, 23312. |
| [1] | (d) Reynes J. F.; Felipe G. Angew. Chem. 2023, 62, 1433. |
| [1] | (e) Jones A. C.; Nicholson W. I.; Smallman H. R.; Browne D. L. Org. Lett. 2020, 22, 7433. |
| [1] | (f) Jones A. C.; Nicholson W. I.; Leitch J. A.; Browne D. L. Org. Lett. 2021, 23, 6337. |
| [1] | (g) Liu Y.; Li X.; Liu Q.; Li X.; Liu H. Org. Lett. 2022, 24, 6604. |
| [1] | (h) Xu H.; Hong R.; Weng M. Y.; Huang R. L.; Wang G. W.; Zhang Z. Org. Lett. 2021, 23, 5305. |
| [1] | (i) Takahashi R.; Gao P.; Kubota K.; Ito H. Chem. Sci. 2023, 14, 499. |
| [1] | (j) Zhu S. E.; Li F.; Wang G. W. Chem. Soc. Rev. 2013, 42, 7535. |
| [1] | (k) Wang G. W. Chem. Soc. Rev. 2013, 42, 7668. |
| [2] | (a) Canka?ová N.; Schütznerová E.; Krchňák V. Chem. Rev. 2019, 119, 12089. |
| [2] | (b) Porcheddu A.; Colacino E.; De Luca L.; Delogu F. ACS Catal. 2020, 10, 8344. |
| [2] | (c) Takahashi R.; Seo T.; Kubota K.; Ito H. ACS Catal. 2021, 11, 14803. |
| [2] | (d) Vadivelu M.; Sampath S.; Muthu K.; Karthikeyan K.; Praveen C. Adv. Synth. Catal. 2021, 363, 4941. |
| [2] | (e) Zhang J.; Zhang P.; Ma Y.; Szostak M. Org. Lett. 2022, 24, 2338. |
| [2] | (f) Wang Y.; Zhang Z.; Deng L.; Lao T.; Su Z.; Yu Y.; Cao H. Org. Lett. 2021, 23, 7171. |
| [2] | (g) Gao Y.; Feng C.; Seo T.; Kubota K.; Ito H. Chem. Sci. 2022, 13, 430. |
| [2] | (h) Chatterjee T.; Ranu B. C. J. Org. Chem. 2021, 86, 13895. |
| [3] | (a) Kandambeth S.; Dey K.; Banerjee R. J. Am. Chem. Soc. 2019, 141, 1807. |
| [3] | (b) Schumacher C.; Hernández J. G.; Bolm C. Angew. Chem. 2020, 59, 16499. |
| [3] | (c) Hao X.; Feng D.; Huang P.; Guo F. Org. Chem. Front. 2024, 11, 2081. |
| [4] | (a) Brahmachari G.; Karmakar I.; Karmakar P. Green Chem. 2021, 23, 4762. |
| [4] | (b) Sharapov A. D.; Fatykhov R. F.; Khalymbadzha I. A.; Sharutin V. V.; Santra S.; Zyryanov G. V.; Chupakhin O. N.; Ranu B. C. Green Chem. 2022, 24, 2429. |
| [4] | (c) Rodrigo E.; Wiechert R.; Walter M. W.; Braje W.; Geneste H. Green Chem. 2022, 24, 1469. |
| [4] | (d) Kong D.; Bolm C. Green Chem. 2022, 24, 6476. |
| [4] | (e) Xu Q.; Sheng X.; Li N.; Zhang J.; Shi H.; Niu M.; Ping Q.; Li N. ACS Sustainable Chem. Eng. 2021, 9, 8232. |
| [4] | (f) Qin J.; Zuo H.; Ni Y.; Yu Q.; Zhong F. ACS Sustainable Chem. Eng. 2020, 8, 12342. |
| [5] | Zhang Y.; Jiang F.; Shi F. Acc. Chem. Res. 2020, 53, 425. |
| [6] | (a) Chen K.; Wang D.; Liu S.; Wang X.; Zhang Y.; Tian Y.; Wu Q.; Shi F. J. Org. Chem. 2021, 86, 10427. |
| [6] | (b) Li T.; Liu S.; Sun Y.; Deng S.; Tan W.; Jiao Y.; Zhang Y.; Shi F. Angew. Chem., Int. Ed. 2021, 60, 2355. |
| [7] | Zhang H.; Shi F. Acc. Chem. Res. 2022, 55, 2562. |
| [8] | (a) Xu M.; Wang H.; Mao Y.; Mei G.; Wang S.; Shi F. J. Org. Chem. 2018, 83, 5027. |
| [8] | (b) Hu C.; Hong G.; He Y.; Zhou C.; Kozlowski M. C.; Wang L. J. Org. Chem. 2018, 83, 4739. |
| [8] | (c) Zhu Z.; Shen Y.; Liu J.; Tao J.; Shi F. Org. Lett. 2017, 19, 1542. |
| [8] | (d) Ma C.; Zhou J.; Zhang Y.; Jiao Y.; Mei G.; Shi F. Chem. Asian J. 2018, 13, 2549. |
| [9] | (a) Xu M.; Wang H.; Wan Y.; Wang S.; Shi F. J. Org. Chem. 2017, 82, 10226. |
| [9] | (b) Wang J.; Wu P.; Wu J.; Mei G.; Shi F. J. Org. Chem. 2018, 83, 5931. |
| [9] | (c) Wu J.; Wang J.; Wu P.; Wang J.; Mei G.; Shi F. Org. Chem. Front. 2018, 5, 1436. |
| [9] | (d) Shi Y. C.; Yan X. Y.; Wu P.; Jiang S.; Xu R.; Tan W.; Shi F. Chin. J. Chem. 2023, 41, 27. |
| [9] | (e) Han T.; Wang M.; Mei G. Chem. Commun. 2021, 57, 8921. |
| [10] | (a) He Y.; Sun X.; Li G.; Mei G.; Shi F. J. Org. Chem. 2017, 82, 2462. |
| [10] | (b) Zhu S.; Zhang Y.; Luo J.; Wang F.; Cao X.; Huang S. Green Chem. 2020, 22, 657. |
| [11] | Mei G.; Shi F. J. Org. Chem. 2017, 82, 7695. |
| [12] | Zhu Z.; Yu L.; Sun M.; Mei G.; Shi F. Adv. Synth. Catal. 2018, 360, 3109. |
| [13] | Deng S.; Qu C.; Jiao Y.; Liu W.; Shi F. J. Org. Chem. 2020, 85, 11641. |
| [14] | Mao J.; Zhang H.; Ding X.; Luo X.; Deng W. J. Org. Chem. 2019, 84, 11186. |
| [15] | Skvorcova M.; Grigorjeva L.; Jirgensons A. Org. Lett. 2015, 17, 2902. |
/
| 〈 |
|
〉 |