含噻唑片段的蛇床子素衍生物的设计、合成及抗菌活性
收稿日期: 2024-04-20
修回日期: 2024-05-23
网络出版日期: 2024-06-24
基金资助
贵州省科技计划(黔科合基础-ZK[2024]一般265); 国家级大学生创新创业训练计划(202310661006)
Design, Synthesis and Antibacterial Activities of Osthole Derivatives Containing Thiazole Fragment
Received date: 2024-04-20
Revised date: 2024-05-23
Online published: 2024-06-24
Supported by
Guizhou Provincial Science and Technology Plan(NO. Qiankehe Foundation ZK[2024]265); National College Students' Innovation and Entrepreneurship Training Program(202310661006)
为了获取抗菌候选化合物, 运用药效片段组合原理, 以天然产物蛇床子素为苗头化合物, 设计合成了26个含噻唑片段的蛇床子素衍生物, 经1H NMR、13C NMR和元素分析确证其结构. 抗菌活性测试结果表明, 2-{[8-(3-甲基丁-2-烯-1-基)-2-氧代-2H-色烯-7-基]氧基}-N-(4-邻氟苯基噻唑-2-基)乙酰胺(5g)对金黄色葡萄球菌(S. aureus)、大肠杆菌(E. coli)、耐甲氧西林金黄色葡萄球菌(MRSA)和耐氟喹诺酮大肠杆菌(FREC)的最小抑菌浓度(MIC)分别为2、4、2和4 μg/mL, 2-{[8-(3-甲基丁-2-烯-1-基)-2-氧代-2H-色烯-7-基]氧基}-N-(4-环丙基噻唑-2-基)乙酰胺(5w)对S. aureus、E. coli、MRSA和FREC的MIC分别为2、2、4和4 μg/mL, 2-{[8-(3-甲基丁-2-烯-1-基)-2-氧代-2H-色烯-7-基]氧基}-N-[(2,4'-双噻唑)-2'-基]乙酰胺(5x)对S. aureus、E. coli、MRSA和FREC的MIC分别为1、2、2和2 μg/mL. 其抗S. aureu活性与对照药苯唑西林基本相当, 优于对照药诺氟沙星; 抗E. coli、MRSA和FREC优于对照药苯唑西林和诺氟沙星. 噻唑片段的引入能提高蛇床子素衍生物的抗菌活性.
杨家强 , 吴学姣 , 卢子聪 , 陈阳密 , 佘慧娴 , 刘海军 . 含噻唑片段的蛇床子素衍生物的设计、合成及抗菌活性[J]. 有机化学, 2024 , 44(11) : 3541 -3549 . DOI: 10.6023/cjoc202404030
In order to obtain antibacterial candidate compounds, using the principle of pharmacodynamic fragment combination, the thiazole fragment was introduced into the structure of the seedling compound osthole. Twenty-six osthole derivatives were designed and synthesized, and confirmed by 1H NMR, 13C NMR and elemental analysis. The antibacterial activities against S. aureus, E. coli, methicillin-resistant S. aureus (MRSA) and fluoroquinolone-resistant E. coli (FREC) were evaluated. The results showed that the minimum inhibitory concentrations (MICs) of N-(4-(2-fluorophenyl)thiazol-2-yl)-2-((8-(3-methyl- but-2-en-1-yl)-2-oxo-2H-chromen-7-yl)oxy)acetamide (5g) were 2, 4, 2, 4 μg/mL, respectively. The MICs of N-(4-cyclo- propylthiazol-2-yl)-2-((8-(3-methylbut-2-en-1-yl)-2-oxo-2H-chromen-7-yl)oxy)acetamide (5w) were 2, 2, 4, 4 μg/mL, respectively. The MICs of N-([2,4'-bithiazol]-2'-yl)-2-((8-(3-methylbut-2-en-1-yl)-2-oxo-2H-chromen-7-yl)oxy)acetamide (5x) were 1, 2, 2, 2 μg/mL. respectively. Their anti-S. aureu activities were comparable to the control drug oxacillin and superior to norfloxacin, and anti-E. coli, MRSA, and FREC were superior to the control drugs oxacillin and norfloxacin. The connection of thiazole fragment to the structure of osthole can effectively enhance antibacterial activities.
| [1] | Edwards F.; MacGowan A.; Macnaughton E. Medicine 2021, 49, 632. |
| [2] | Muteeb G.; Rehman M. T.; Shahwan M.; Aatif M. Pharmaceuticals 2023, 16, 1615. |
| [3] | Chu V. T.; Tsitsiklis A.; Mick E.; Ambroggio L.; Kalantar K. L.; Glascock A.; Osborne C. M.; Wagner B. D.; Matthay M. A.; DeRisi J. L.; Calfee C. S.; Mourani P. M.; Langelier C. R. Nat. Commun. 2024, 15, 92. |
| [4] | Zeng W. N.; Huang G. L.; Wang B.; Cai J.; Zheng C. J. Chin. J. Org. Chem. 2021, 41, 4255 (in Chinese). |
| [4] | (曾尾女, 黄国雷, 王斌, 蔡瑾, 郑彩娟, 有机化学, 2021, 41, 4255.) |
| [5] | Moreno Cardenas C.; ?i?ek S. S. Front. Microbiol. 2023, 14, 1234115. |
| [6] | Kumar A.; Chopra K.; Mukherjee M.; Pottabathini R.; Dhull D. K. Eur. J. Pharmacol. 2015, 761, 288. |
| [7] | Wang H. H.; Yang P.; Zhai H. J.; Zhang S.; Cao Y. Q.; Yang Y. X.; Wu C. L. Chin. J. Org. Chem. 2022, 42, 557 (in Chinese). |
| [7] | (王焕焕, 杨璞, 翟洪进, 张烁, 曹亚权, 杨莹雪, 吴春丽, 有机化学, 2022, 42, 557.) |
| [8] | Ekinci ?. B.; Ch?odowska A.; Olejnik M. Int. J. Mol. Sci. 2023, 24, 1696. |
| [9] | Sun M. N.; Sun M. J.; Zhang J. Y. Med. Chem. Res. 2021, 30, 1767. |
| [10] | Ren Z. L.; Lv M.; Xu H. Mini-Rev. Med. Chem. 2022, 22, 2124. |
| [11] | Ansari K.; Gupta U.; Sinha A.; Sharma A.; Rahate K. Nat. Prod. J. 2024, 14, 35. |
| [12] | Rosselli S.; Maggio A.; Bellone G.; Formisano C.; Basile A.; Cicala C.; Alfieri A.; Mascolo N.; Bruno M. Planta Med. 2007, 73, 116. |
| [13] | Figueroa M.; Rivero-Cruz I.; Rivero-Cruz B.; Bye R.; Navarrete A.; Mata R. J. Ethnopharmacol. 2007, 113, 125. |
| [14] | Deng X. M.; Zhou Y. L.; Wang J. F. CN 109464439, 2019. |
| [15] | Gowsia I.; Mir F.; Banday J. Turk. J. Chem. 2022, 46, 1984. |
| [16] | Li M.; Xia D. G.; Wang Y. X.; Cheng X.; Gong J. X.; Chen Y.; Lü X. H. Chin. J. Org. Chem. 2023, 43, 686 (in Chinese). |
| [16] | (李猛, 夏东国, 王云霄, 程祥, 巩杰秀, 陈耀, 吕献海, 有机化学, 2023, 43, 686.) |
| [17] | Kumar S.; Arora A.; Sapra S.; Kumar R.; Singh B. K.; Singh S. K. RSC Adv. 2024, 14, 902. |
| [18] | Jorgenson M. R.; DePestel D. D.; Carver P. L. Ann. Pharmacother. 2011, 45, 1384. |
| [19] | Merker A.; Danziger L. H.; Rodvold K. A.; Glowacki R. C. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1741. |
| [20] | Zhou X. R.; Yan B. Y.; Wu X. J.; Yang J. Q. Chem. Bull. 2022, 85, 1371 (in Chinese). |
| [20] | (周绪容, 鄢伯钰, 吴学姣, 杨家强, 化学通报, 2022, 85, 1371.) |
| [21] | Shen G. X. Microbiology and Immunology, People’s Medical Publishing House, Beijing, 2007, p. 326 (in Chinese). |
| [21] | (沈关心, 微生物与免疫学, 人民卫生出版社, 北京, 2007, p. 326.) |
/
| 〈 |
|
〉 |