中性镍催化制备聚烯烃弹性体: 位阻与次级配位协同作用
收稿日期: 2024-05-07
修回日期: 2024-06-12
网络出版日期: 2024-07-02
基金资助
国家自然科学基金(22122110); 国家自然科学基金(U23B6011); 吉林省科技厅(20230101347JC)
Preparation of Polyolefin Elastomers by Neutral Nickel Catalysts: Synergistic Effect of Steric Hindrance and Secondary Interaction
Received date: 2024-05-07
Revised date: 2024-06-12
Online published: 2024-07-02
Supported by
National Natural Science Foundation of China(22122110); National Natural Science Foundation of China(U23B6011); Jilin Provincial Science and Technology Department Program(20230101347JC)
水杨醛亚胺中性镍是一类经典的乙烯聚合催化剂, 通过对其结构的精细调控, 能够制备出多种不同特性的聚乙烯材料, 如高支化的聚乙烯油以及低支化的超高分子量聚乙烯等. 然而, 在制备弹性体材料方面, 该催化剂面临一定的挑战. 设计合成了两种同时含有大位阻和邻位杂原子基团的芳胺, 用于合成水杨醛亚胺配体及相应的中性镍催化剂[{N-[2,4-二(二苯并环庚基)-6-苯氧基]苯基-3-叔丁基水杨醛亚胺}-镍-(苯基)(三苯基膦)(Ni2)和{N-[2,4-二(二苯并环庚基)-6-苯磺酰基]苯基-3-叔丁基水杨醛亚胺}-镍-(苯基)(三苯基膦)(Ni3)]. 系统地考察了温度和乙烯压力对催化性能的影响, 揭示了催化剂热稳定性、催化活性, 以及聚乙烯分子量和支化度的变化规律. 杂原子基团的次级配位效应与芳胺的空间位阻效应相结合, 使得包含SO2Ph基团的催化剂Ni3实现了支化度(61 brs/1000C)与分子量(Mn=15.29×104)的平衡, 为制备性能优异的聚乙烯弹性体材料提供了有力支撑. 空间位阻与次级配位效应的协同作用为新型水杨醛亚胺中性镍催化剂的开发, 以及相关催化剂的设计和优化提供了新的思路.
李乾坤 , 穆红亮 , 简忠保 . 中性镍催化制备聚烯烃弹性体: 位阻与次级配位协同作用[J]. 有机化学, 2024 , 44(11) : 3399 -3408 . DOI: 10.6023/cjoc202403034
Salicylaldiminato neutral nickel catalysts is a family of classic ethylene polymerization catalysts. Through elabrate modulation of the structures, various polyethylene materials with different characteristics can be prepared, such as highly branched polyethylene oil and ultra-high molecular weight polyethylene with low branching. However, these catalysts face certain challenges in the preparation of elastomeric materials. In this study, two arylamines containing both sterically hindered groups and adjacent heteroatom groups were designed and synthesized for the synthesis of salicylaldiminato ligands and the corresponding neutral nickel catalysts ({N-[2,4-bis(dibenzosuberyl)-6-phenoxy]phenyl-3-tert-butylsalicylideneiminato}-nickel(II)-(phenyl)(triphenylphosphine) (Ni2) and {N-[2,4-bis(dibenzosuberyl)-6-benzenesulfonyl]phenyl-3-tert-butylsalicyli- deneiminato}-nickel(II)-(phenyl)(triphenylphosphine) (Ni3)). The effects of temperature and ethylene pressure on catalytic performance were systematically investigated, revealing the variation patterns of catalyst thermal stability, catalytic activity, polymer molecular weight and branching density. The combination of the secondary coordination effect of the heteroatom groups and the steric effect of the arylamine allowed catalyst Ni3 containing SO2Ph group to achieve a balance between branching density (61 brs/1000C) and polymer molecular weight (Mn=15.29×104), providing strong support for the preparation of polyethylene elastomer with excellent mechanical properties. The synergistic effect of steric hindrance and secondary interaction provides new ideas for the development of novel salicylaldiminato neutral nickel catalysts and the design and optimization of related catalysts.
| [1] | Wang C.; Friedrich S.; Younkin T. R.; Li R. T.; Grubbs R. H.; Bansleben D. A.; Day M. W. Organometallics 1998, 17, 3149. |
| [2] | Younkin T. R.; Connor E. F.; Henderson J. I.; Friedrich S. K.; Grubbs R. H.; Bansleben D. A. Science 2000, 287, 460. |
| [3] | Mecking S.; Schnitte M. Acc. Chem. Res. 2020, 53, 2738. |
| [4] | Mu H.; Pan L.; Song D.; Li Y. Chem. Rev. 2015, 115, 12091. |
| [5] | Mu H.; Zhou G.; Hu X.; Jian Z. Coord. Chem. Rev. 2021, 435, 213802. |
| [6] | Cheng H.; Cai Z. ChemCatChem 2018, 10, 497. |
| [7] | Hicks F. A.; Brookhart M. Organometallics 2001, 20, 3217. |
| [8] | Hicks F. A.; Jenkins J. C.; Brookhart M. Organometallics 2003, 22, 3533. |
| [9] | Jenkins J. C.; Brookhart M. Organometallics 2003, 22, 250. |
| [10] | Li K.; Mu H.; Kang X.; Jian Z. Macromolecules 2022, 55, 2533. |
| [11] | Li M.; Cai Z.; Eisen M. S. Organometallics 2018, 37, 4753. |
| [12] | Li Y.; Cheng H.; Xiao R.; Cai Z. J. Catal. 2020, 383, 117. |
| [13] | Song D.; Wang Y.; Mu H.; Li B.; Li Y. Organometallics 2011, 30, 925. |
| [14] | Song D.; Wu J.; Ye W.; Mu H.; Li Y. Organometallics 2010, 29, 2306. |
| [15] | Song D.; Ye W.; Wang Y.; Liu J.; Li Y. Organometallics 2009, 28, 5697. |
| [16] | Tran Q. H.; Brookhart M.; Daugulis O. J. Am. Chem. Soc. 2020, 142, 7198. |
| [17] | Connor E. F.; Younkin T. R.; Henderson J. I.; Waltman A. W.; Grubbs R. H. Chem. Commun. 2003, 2272. |
| [18] | G?ttker-Schnetmann I.; Korthals B.; Mecking S. J. Am. Chem. Soc. 2006, 128, 7708. |
| [19] | Korthals B.; G?ttker-Schnetmann I.; Mecking S. Organometallics 2007, 26, 1311. |
| [20] | Schnitte M.; Scholliers J. S.; Riedmiller K.; Mecking S. Angew. Chem., Int. Ed. 2020, 59, 3258. |
| [21] | Xi Z.; Bazzi H. S.; Gladysz J. A. J. Am. Chem. Soc. 2015, 137, 10930. |
| [22] | Bastero A.; G?ttker-Schnetmann I.; R?hr C.; Mecking S. Adv. Synth. Catal. 2007, 349, 2307. |
| [23] | G?ttker-Schnetmann I.; Wehrmann P.; R?hr C.; Mecking S. Organometallics 2007, 26, 2348. |
| [24] | Osichow A.; G?ttker-Schnetmann I.; Mecking S. Organometallics 2013, 32, 5239. |
| [25] | Schnitte M.; Lipinski S.; Schiebel E.; Mecking S. Organometallics 2020, 39, 13. |
| [26] | Wang J.; Yao E.; Chen Z.; Ma Y. Macromolecules 2015, 48, 5504. |
| [27] | Zuideveld M. A.; Wehrmann P.; R?hr C.; Mecking S. Angew. Chem., Int. Ed. 2004, 43, 869. |
| [28] | Kenyon P.; Mecking S. J. Am. Chem. Soc. 2017, 139, 13786. |
| [29] | Stephenson C. J.; McInnis J. P.; Chen C.; Weberski M. P.; Motta A.; Delferro M.; Marks T. J. ACS Catal. 2014, 4, 999. |
| [30] | Shu D.; Mouat A. R.; Stephenson C. J.; Invergo A. M.; Delferro M.; Marks T. J. ACS Macro Lett. 2015, 4, 1297. |
| [31] | Wang C.; Kang X.; Dai S.; Cui F.; Li Y.; Mu H.; Mecking S.; Jian Z. Angew. Chem., Int. Ed. 2021, 60, 4018. |
| [32] | Wang C.; Wu S.; Chen Q.; Mu H.; Jian Z. Macromolecules 2023, 56, 8651. |
| [33] | Li Q.; Wang C.; Mu H.; Jian Z. J. Catal. 2021, 400, 332. |
| [34] | Wang C.; Kang X.; Mu H.; Jian Z. Macromolecules 2022, 55, 5441. |
| [35] | Zhang Y.; Zhang Y.; Hu X.; Wang C.; Jian Z. ACS Catal. 2022, 12, 14304. |
| [36] | Bi Z.; Zhou J.; Zhu N.; Peng D.; Chen C. Macromolecules 2024, DOI: 10.1021/acs.macromol.3c02378. |
| [37] | Hai Z.; Lu Z.; Li S.; Cao Z.-Y.; Dai S. Polym. Chem. 2021, 12, 4643. |
| [38] | Li S.; Zhao Y.; Dai S. J. Polym. Sci. 2021, 59, 638. |
| [39] | Lian K.; Zhu Y.; Li W.; Dai S.; Chen C. Macromolecules 2017, 50, 6074. |
| [40] | Mahmood Q.; Sun W.-H. Roy. Soc. Open Sci. 2018, 5, 180367. |
| [41] | Mahmood Q.; Zeng Y.; Yue E.; Solan G. A.; Liang T.; Sun W.-H. Polym. Chem. 2017, 8, 6416. |
| [42] | Suo H.; Oleynik I. V.; Huang C.; Oleynik I. I.; Solan G. A.; Ma Y.; Liang T.; Sun W.-H. Dalton. Trans. 2017, 46, 15684. |
| [43] | Vignesh A.; Zhang Q.; Ma Y.; Liang T.; Sun W.-H. Polymer 2020, 187, 122089. |
| [44] | Wang X.; Fan L.; Ma Y.; Guo C.-Y.; Solan G. A.; Sun Y.; Sun W.-H. Polym. Chem. 2017, 8, 2785. |
| [45] | Yan Z.; Xu G.; Wang H.; Dai S. Eur. Polym. J. 2022, 168, 111105. |
| [46] | Li Q.; Mu H.; Jian Z. Polym. Chem. 2023, 14, 3196. |
| [47] | Wang C.; Ma Z.; Sun X.; Gao Y.; Guo Y.; Tang Y.; Shi L. Organometallics 2006, 25, 3259. |
| [48] | Schiebel E.; Santacroce S.; Falivene L.; G?ttker-Schnetmann I.; Caporaso L.; Mecking S. ACS Catal. 2019, 9, 3888. |
| [49] | Hidai M.; Kashiwagi T.; Ikeuchi T.; Uchida Y. J. Organomet. Chem. 1971, 30, 279. |
/
| 〈 |
|
〉 |