窄化芘基发光分子半峰宽的合成策略
收稿日期: 2024-05-14
修回日期: 2024-06-22
网络出版日期: 2024-07-02
基金资助
国家自然科学基金(21975054); 广东省基础与应用基础研究基金(2020A1515110992)
An Efficient Approach to Narrow the Emission Band of Pyrene-Based Emitters
Received date: 2024-05-14
Revised date: 2024-06-22
Online published: 2024-07-02
Supported by
National Natural Science Foundation of China(21975054); Guangdong Basic and Applied Basic Research Foundation(2020A1515110992)
开发高效窄带发射的有机发光材料是实现有机发光二极管高色纯度、高分辨的关键. 针对有机发光分子的发射光谱谱较宽的问题, 基于芘基发光材料体系, 提出了利用空间立体效应窄化发光分子的半峰宽的分子设计策略. 利用空间位阻效应, 通过在芘的2-位引入大位阻的取代基团, 降低了3-位取代基团三苯胺的分子转动, 设计合成的芘基发光分子5具有相对高的固态量子产率(>0.31)和固态下较窄的半峰宽(相较于溶液态和没有立体效应存在下). 特别的, 制备的化合物5c在固态下显示出最大的发射峰位于484 nm, 量子产率较高(0.38)和发射半峰宽较窄(49 nm).
谢志鑫 , 黎少玲 , 刘威 , 严楷 , 蒋涛 , 刘一苇 , Md. Monarul Islam , 冯星 . 窄化芘基发光分子半峰宽的合成策略[J]. 有机化学, 2024 , 44(8) : 2504 -2512 . DOI: 10.6023/cjoc202403054
The construction of high color purity and high resolution organic light-emitting diodes (OLEDs) is facilitated by the development of highly-efficient organic luminescent materials with narrow-band emission. Herein, in order to address the problem of broad emission spectra of organic luminescent materials, an effective molecular design strategy is presented to reduce the full width at half maximum (FWHM) of emission by integrating the steric hindrance effect in the pyrene system. As the bulky group was introduced into the 2-position, compounds 5 not only show a relative high quantum yield (>0.31) in the solid state, but also can suppress the molecular rotation of triphenylamine (TPA) at the 3-position to narrow the FWHM in the solid state compared to that in solution. Compound 5c containing biphenyl units exhibits a maximum emission peak at 484 nm with a quantum yield of 0.38 and FWHM value of 49 nm in the solid state.
Key words: aggregation-induced emission; pyrene; narrow-band emission; steric effect
| [1] | Huang, Y.; Jia, M. J.; Li, C.; Yang, Y.; He, Y. L.; Luo, Y. J.; Huang, Y.; Zhou, L.; Lu, Z. Chem. Commun. 2024, 60, 3194. |
| [2] | Jung, M. H.; Seon, H. H.; Ambika, P.; Ji-Eun, J.; Han, Y. W. NPG Asia Mater. 2021, 13, 53. |
| [3] | Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361. |
| [4] | Tu, L. J.; Xie, Y. J.; Li, Z.; Tang, B. Z. SmartMa. 2021, 2, 326. |
| [5] | (a) Jiang, G.; Liu, H.; Liu, H.; Ke, G.; Ren, T. B.; Xiong, B.; Zhang, X. B.; Yuan, L. Angew. Chem. Int. Ed. 2023, e202315217. |
| [5] | (b) Huang, Z.; Huang, C.; Tang, Y.; Xiao, Z.; Li, N.; Hua, T.; Cao, X.; Zhou, C.; Wu, C.; Yang, C. Dyes Pig.. 2022, 197, 109860. |
| [6] | Yang, G.; Ran, Y.; Wu, Y.; Chen, M.; Bin, Z.; You, J. Aggregat. 2022, 3, e127. |
| [7] | Zhao, Y.; Chen, P. P.; Han, L. Z.; Wang, E. J. Chin. J. Org. Chem. 2023, 43, 2454 (in Chinses). |
| [7] | (赵洋, 陈盼盼, 韩立志, 王恩举, 有机化学, 2023, 43, 2454.) |
| [8] | Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740. |
| [9] | Zhou, P. W.; Han, K. Aggregat. 2022, 3, e160. |
| [10] | Xu, H.; Cheng, P. Aggregat. 2024, e518. |
| [11] | Zhang, S. W.; Li, D.; Wang, X. Y.; Fan, J.; Wang, T.; Yu, S. K.; Liao, W. Y.; Jia, X. D.; Yuan, Y. Luminescenc. 2021, 36, 958. |
| [12] | Leung, N. L. C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 15349. |
| [13] | Gui, Y. X.; Chen, K. Y.; Sun, Y.; Tan, Y. H.; Luo, W. S.; Zhu, D. X.; Xiong, Y.; Yan, D. Y.; Wang, D.; Tang, B. Z. Chin. J. Chem. 2022, 40, 1249. |
| [14] | Chen, Y.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z. Mater. Horiz. 2019, 6, 428. |
| [15] | Feng, X.; Wang, X. H.; Redshaw, C.; Tang, B. Z. Chem. Soc. Rev. 2023, 52, 6715. |
| [16] | Figueira-Duarte, T. M.; Müllen, K. Chem. Rev. 2011, 111, 7260. |
| [17] | Islam, M. M.; Hu, Z.; Wang, Q. S.; Redshaw, C.; Feng, X. Mater. Chem. Front. 2019, 3, 762. |
| [18] | Liu, Y. W.; Zhang, J. Y.; Wang, X. H.; Xie, Z. X.; Zheng, H.; Zhang, H.; Cai, X. M.; Zhao, Y.; Redshaw, C.; Min, Y. G.; Feng, X. J. Org. Chem. 2024, 89, 3319. |
| [19] | Wang, X. H.; Zhang, J. Y.; Mao, X. Y.; Liu, Y. W.; Li, R. K.; Bai, J.; Zhang, J.; Redshaw, C.; Feng, X.; Tang, B. Z. J. Org. Chem. 2022, 87, 8503. |
| [20] | (a) Wang, Z. Y.; Liu, B.; Zhao, J. W.; Ruan, G. L.; Tao, S. L.; Tong, Q. X. Org. Electron. 2018, 52, 89. |
| [20] | (b) Zhang, L.; Zhao, H.; Hu, M.; Wang, X.; Hu, L.; Mao, H.; Yuan, Z.; Ma, W.; Chen, Y. Smal. 2021, 17, 2103537. |
| [21] | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A 08; Gaussian, Inc., Wallingford, C., 2009. |
| [22] | Feng, X.; Hu, J. Y.; Yi, L.; Seto, N.; Tao, Z.; Redshaw, C.; Elsegood, M. R. J.; Yamato, T. Chem. Asian J. 2012, 7, 2854. |
| [23] | Crawford, A. G.; Dwyer, A. D.; Liu, Z. Q.; Steffen, A.; Beeby, A.; P?lsson, L.-O.; Tozer, D. J.; Marder, T. B. J. Am. Chem. Soc. 2011, 133, 13349. |
| [24] | Thomas, K. R. J.; Maurya, A.; Nagar, M. R.; Jou, J-H. Dyes Pig.. 2023, 216, 111373. |
| [25] | Song, X. Y.; Wang, M.; Liu, W.; Zheng, H.; Redshaw, C.; Feng, X.; Zhao, Z. J.; Tang, B. Z. Dyes Pig.. 2023, 219, 111532. |
| [26] | Ha, J. M.; Hur, S. H.; Pathak, A.; Jeong, J-E.; Woo, H. Y. NPG Asia Mate.. 2021, 13, 53. |
| [27] | Liu, W.; Li, S. L.; Xie, Z. X.; Huang, K. W.; Yan, K.; Zhao, Y.; Redshaw, C.; Feng, X.; Tang, B. Z. Adv. Opt. Mater. 2024, 2400301. |
| [28] | Jiang, H.; Li, H. L.; Jin, J. B.; Bodedla, G. B.; Tao, P.; Ma, D. G.; Wong, W.-Y. J. Mater. Chem. C. 2023, 11, 6438. |
| [29] | Zhu, H. C.; Huang, J. Y.; Kong, L.; Tian, Y. P.; Yang, J. X. Dyes Pig.. 2018, 51, 140. |
| [30] | Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jp.. 1956, 29, 465. |
| [31] | Lippert, E.; Bunsenges, B. Phys. Chem. 1957, 61, 962. |
| [32] | Zhang, L. L.; Wang, Y. Y.; Zhu, G. N.; Dai, W. B.; Zhao, Z. X.; Zhao, Y.; Zhi, J. G.; Dong, Y. P. Acta Chim. Sinic. 2022, 80, 282 (in Chinese). |
| [32] | (张璐璐, 王媛媛, 朱贵楠, 戴文博, 赵紫璇, 赵盈, 支俊格, 董宇平, 化学学报, 2022, 80, 282.) |
| [33] | Liu, J. k.; Zhang, H. K.; Hu, L. R.; Wang, J.; Lam, J. W. Y.; Blancafort, L.; Tang, B. Z. J. Am. Chem. Soc. 2022, 144, 7901. |
| [34] | Xie, Z. X.; Liu, W.; Liu, Y. W.; Song, X. Y.; Zheng, H.; Su, X.; Redshaw, C.; Feng, X. J. Org. Chem. 2024, 89, 1681. |
/
| 〈 |
|
〉 |