研究论文

钯催化不对称碳氢键活化合成平面手性二茂铁磺酰胺化合物

  • 张朝威 ,
  • 徐兵斌 ,
  • 刘文龙 ,
  • 赵敬 ,
  • 段伟良
展开
  • a 扬州大学化学化工学院 江苏扬州 225002
    b 内蒙古大学化工学院 呼和浩特 010000

收稿日期: 2024-04-01

  修回日期: 2024-06-07

  网络出版日期: 2024-07-02

基金资助

国家自然科学基金(22371150); 江苏省研究生科研与实践创新计划(KYCX22-3457); 江苏省研究生科研与实践创新计划(YKYCX19-063)

Palladium-Catalyzed Asymmetric C—H Activation for the Synthesis of Planar Chiral Ferrocene Sulfonamides

  • Chaowei Zhang ,
  • Bingbin Xu ,
  • Wenlong Liu ,
  • Jing Zhao ,
  • Weiliang Duan
Expand
  • a College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002
    b College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010000

Received date: 2024-04-01

  Revised date: 2024-06-07

  Online published: 2024-07-02

Supported by

National Natural Science Foundation of China(22371150); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22-3457); Postgraduate Research & Practice Innovation Program of Jiangsu Province(YKYCX19-063)

摘要

研究了钯催化下N-(2-溴芳基)-N-烷基二茂铁磺酰胺分子内不对称C—H键芳基化反应, 以优异的收率和最高90%的ee值合成了一系列新型的平面手性二茂铁磺酰胺化合物.

本文引用格式

张朝威 , 徐兵斌 , 刘文龙 , 赵敬 , 段伟良 . 钯催化不对称碳氢键活化合成平面手性二茂铁磺酰胺化合物[J]. 有机化学, 2025 , 45(2) : 707 -716 . DOI: 10.6023/cjoc202404002

Abstract

Pd-catalyzed asymmetric synthesis of planar chiral ferrocenes by enantioselective intramolecular C—H arylation of N-(2-bromoaryl)-N-alkylferrocenesulfonamide were efficiently achieved in good enantioselectivities (up to 90% ee) and high yields.

参考文献

[1]
(a) Halterman, R. L. Chem. Rev. 1992, 92, 965.
[1]
(b) Fu, G. C. Acc. Chem. Res. 2006, 39, 853.
[1]
(c) Fu, G. C. Acc. Chem. Res. 2000, 33, 412.
[1]
(d) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659.
[1]
(e) Schaarschmidt, D.; Lang, H. Organometallics 2013, 32, 5668.
[1]
(f) Fabre, B. Acc. Chem. Res. 2010, 43, 1509.
[1]
(g) Dai, L.-X.; Hou, X.-L. Chiral Ferrocenes in Asymmetric Catalysis, Wiley-VCH, Weinheim, Germany, 2010.
[1]
(h) Dai, L.; Xu, D.; Mao, Y.-F.; Zhu, J.-Q.; Yang, M. J. Chin. J. Org. Chem. 2022, 42, 2364 (in Chinese).
[1]
(戴力, 徐迪, 毛翼斐, 朱嘉琦, 杨梦娇, 有机化学, 2022, 42, 2364.)
[2]
(a) Tropiano, M.; Kilah, N. L.; Morten, M.; Rahman, H.; Davis, J. J.; Beer, P. D.; Faulkner, S. J. Am. Chem. Soc. 2011, 133, 11847.
[2]
(b) Hayashi, T.; Togni, A. Ferrocenes, Wiley-VCH, Weinheim, Germany, 1995.
[2]
(c) Togni, A.; Haltermann, R. L. Metallocenes, Wiley-VCH, Weinheim, Germany, 1998.
[3]
(a) Schlotter, K.; Boeckler, F.; Hubner, H.; Gmeiner, P. J. Med. Chem. 2005, 48, 3696.
[3]
(b) Huber, D.; Hubner, H.; Gmeiner, P. J. Med. Chem. 2009, 52, 6860.
[3]
(c) Salmon, A. J.; Williams, M. L.; Wu, Q. K.; Morizzi, Julia.; Gregg, Daniel.; Charman, S. A.; Vullo, Daniela.; Supuran, C. T.; Poulsen, S. A. J. Med. Chem. 2012, 55, 5506.
[3]
(d) Marzenell, P.; Hagen, H.; Sellner, L.; Zenz, T.; Grinyte, R.; Pavlov, V.; Daum, S.; Mokhir, A.; J. Med. Chem. 2013, 56, 6935.
[4]
(a) Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P.; Ugi, I. J. Am. Chem. Soc. 1970, 92, 5389.
[4]
(b) Riant, O.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc. 1993, 115, 5835;
[4]
(c) Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. Synlett 1995, 1995, 74.
[5]
(a) Battelle, L. F.; Bau, R.; Gokel, G. W.; Oyakawa, R. T.; Ugi, I. J. Am. Chem. Soc. 1973, 95, 482.
[5]
(b) Nishibayashi, Y.; Arikawa, Y.; Ohe, K.; Uemura, S. J. Org. Chem. 1996, 61, 1172.
[5]
(c) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685;
[5]
(d) Genet, C.; Canipa, S. J.; O’Brien, P.; Taylor, S. J. Am. Chem. Soc. 2006, 128, 9336.
[5]
(e) Steffen, P.; Unkelbach, C.; Christmann, M.; Hiller, W.; Stroh- mann, C. Angew. Chem., Int. Ed. 2013, 52, 9836.
[6]
(a) Schaarschmid, D.; Lang, H. Organometallics 2013, 32, 5668.
[6]
(b) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351.
[6]
(c) Arae, S.; Ogawawara, M. Tetrahedron Lett. 2015, 56, 1751.
[6]
(d) Wang, Y.; Zhang, A.; Liu, L.; Kang, J.; Zhang, F.; Ma, W. Chin. J. Org. Chem. 2015, 35, 1399 (in Chinese).
[6]
(王艳芳, 张安安, 刘澜涛, 康建勋, 张富强, 马文瑾, 有机化学, 2015, 35, 1399.)
[7]
Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2456.
[8]
(a) Shibata, T.; Shizuno, T. Angew. Chem., Int. Ed. 2014, 53, 5514.
[8]
(b) Liu, C.-X.; Yin, S.-Y.; Zhao, F.; Yang, H.; Feng, Z.; Gu, Q.; You, S.-L. Chem. Rev. 2023, 123, 10079.
[9]
(a) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17, 3102.
[9]
(b) Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918.
[9]
(c) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.
[9]
(d) Wang, S.-B.; Zheng, J.; You, S.-L. Organometallics 2016, 35, 1420.
[10]
Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
[11]
Zhou, Q.; Qiao, L.-L.; Zhang, A.-A.; Li, L.; Meng, T.-J.; Fan, B.-M.; Gao, Y.-Y.; Liu, L. Green Synth Catal. https://doi.org/ 10.1016/j.gresc.2024.02.007.
[12]
(a) Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. J. Am. Chem. Soc. 2014, 136, 4472.
[12]
(b) Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 4841.
[12]
(c) Xu, B.-B.; Ye, J.; Yuan, Y.; Duan, W.-L. ACS Catal. 2018, 8, 11735.
[12]
(d) Zhang, S.; Lu, J.; Ye, J.; Duan, W.-L. Chin. J. Org. Chem. 2016, 36, 752 (in Chinese).
[12]
(张松, 陆俊筑, 叶金星, 段伟良, 有机化学, 2016, 36, 752.)
[12]
(e) Nottingham, C. H.; Muller-Bunz, H.; Guiry, P. J. Angew. Chem., Int. Ed. 2016, 55, 11115.
[12]
(f) Liu, L.-T.; Liu, H.-H.; Zuo, Z.-Z.; Zhang, A.-A.; Li, Z.-Y.; Meng, T.-J.; Wu, W.; Hua, Y.-Z.; Mao, G.-L. Chin. Chem. Lett. 2021, 32, 239.
[12]
(g) Zhang, A.-A.; Chen, C.; Gao, Y.-S.; Mo, M.-Y.; Shen, R.-Z.; Zhang, Y.-H.; Ishidab, N.; Murakami, M.; Liu, L.-T. Green Synth. Catal. 2021, 311.
[13]
(a) Gao, D.-W.; Shi, Y.-C; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.
[13]
(b) Pi, C.; Li, Y.; Cui, X.; Zhang, H.; Han, Y.; Wu, Y. Chem. Sci. 2013, 4, 2675.
[13]
(c) Shi, Y.-C.; Yang, R.-F.; Gao, D.-W.; You, S.-L. Beilstein J. Org. Chem. 2013, 9, 1891.
[13]
(d) Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164.
[13]
(e) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544.
[13]
(f) Cai, Z.-J.; Liu, C.-X.; Gu, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 2149.
[13]
(g) Huang, Y.-Z. Pi, C.; Cui, X.-L.; Wu, Y.-J. Adv. Synth. Catal. 2020, 362, 1385.
[14]
(a) Aminov, R. I. Front Microbiol. 2010, 1, 134.
[14]
(b) Domagk, G. Deut. Med. Wochenschr. 1935, 61, 250.
[14]
(c) Schnitker, M. A. New Engl. J. Med. 1938, 218, 503.
[14]
(d) Marshall, E. K.; Emerson, K.; Cutting, W. C. J. Pharmacol. Exp. Ther. 1937, 61, 196.
[15]
(a) Caner, H.; Groner, E.; Levy, L. Drug Discovery Today 2004, 9, 105.
[15]
(b) Stinson, S. C. Chem. Eng. News 2000, 78, 55.
[16]
(a) Enders, D.; Thomas, C. R.; Vignola, N.; Raabe, G. Helv. Chim. Acta 2002, 85, 3657.
[16]
(b) Koch, F. M.; Peters, R. Chem. Eur. J. 2011, 17, 3679.
[16]
(c) Zajac, M.; Peters, R. Chem. Eur. J. 2009, 15, 8204.
[16]
(d) Johnson, M. G.; Gribble, Jr., M., W.; Houze, J. B.; Paras, N. A. Org. Lett. 2014, 16, 6248.
[17]
(a) Hu, Y..; Lang, K.; Li, C.; Gill, J.; Kim, I.; Lu, H.-J.; Fields, K.-B.; Marshall, M.; Cheng, Q.; Cui, X.; Wojtas, L.; Zhang, X.-P. J. Am. Chem. Soc. 2019, 141, 18160.
[17]
(b) Chuprakov, S.; Malik, J.-A.; Zibinsky, M.; Fokin, V.-V. J. Am. Chem. Soc. 2011, 133, 10352.
[18]
Ma, X.; Gu, Z. RSC Adv. 2014, 4, 36241.
[19]
Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014, 16, 5336.
[20]
Erb, W.; Wen, M.; Roisnel, T.; Mongin, F. Synthesis 2021, 53, 2612.
文章导航

/