研究论文

氧化锆负载硒催化苯胺氧化聚合反应

  • 雍达明 ,
  • 左婷婷 ,
  • 吴启超 ,
  • 张旭
展开
  • a 扬州工业职业技术学院化工学院 江苏扬州 225127
    b 扬州大学化学化工学院 江苏扬州 225002

收稿日期: 2024-04-16

  修回日期: 2024-06-06

  网络出版日期: 2024-07-02

基金资助

江苏省自然科学基金面上项目(BK20191220); 江苏省高校优秀科技创新团队(2021); 江苏省国际合作项目(BZ2023038); 及江苏省高等学校自然科学基金(19KJB210020)

Se/ZrO2-Catalyzed Oxidative Polymerization of Aniline

  • Daming Yong ,
  • Tingting Zuo ,
  • Qichao Wu ,
  • Xu Zhang
Expand
  • a School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu 225127
    b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002
*Corresponding authors. E-mail:;

Received date: 2024-04-16

  Revised date: 2024-06-06

  Online published: 2024-07-02

Supported by

Jiangsu Provincial Natural Science Foundation General Project(BK20191220); Jiangsu Provincial Excellent Science and Technology Innovation Team(2021); Jiangsu Province International Cooperation Project(BZ2023038); Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB210020)

摘要

聚苯胺(PANIs)是通过苯胺的氧化聚合合成的材料, 已被广泛使用. 目前的合成方法需要使用化学氧化剂, 并使用HCl/NaOH作为酸碱调节剂, 会带来大量废盐, 也会导致材料中的杂离子残留而影响其性能, 这些缺点不利于其工业应用. 报道了一种制备聚苯胺的新方法, 即氧化锆负载硒催化苯胺在无酸碱调节剂的条件下以氧气为氧化剂的氧化聚合. 该方法的相对安全和绿色的特点使其更适合大规模应用. 研究表明, 该方法制备的聚苯胺可用作载体负载钯催化剂, 其性能与传统方法合成的材料无异.

本文引用格式

雍达明 , 左婷婷 , 吴启超 , 张旭 . 氧化锆负载硒催化苯胺氧化聚合反应[J]. 有机化学, 2024 , 44(11) : 3392 -3398 . DOI: 10.6023/cjoc202404022

Abstract

Polyanilines (PANIs) are widely employed materials that are synthesized via the oxidative polymerization of anilines. However, the present synthetic methods always require the use of chemical oxidants and employ HCl/NaOH as the acid-base regulator, resulting in a large amount of waste salt and residual impurities in the material that affect its performance. These drawbacks are unfavorable for industrial applications. A novel method for the preparation of PANIs, i.e. the Se/ZrO2- catalyzed oxidative polymerization of aniline with O2 free of the acid-base regulator is developed. The relatively safe and green features of the method make it more practical for large-scale applications. Researches showed that PANIs prepared by this method could be used as the support to anchor palladium catalyst, and its activity was as good as that of the materials synthesized via traditional methods.

参考文献

[1]
(a) Bai L.; Shi Y.; Zhang X.; Cao X.; Jia J.; Shi H.; Lu W. Analyst 2023, 148, 3359.
[1]
(b) Zhang Y.-Y.; Zhang J.; Wang G.-L.; Wang Z.-F.; Luo Z.-W.; Zhang M. Rare Metals 2023, 42, 2344.
[1]
(c) Zheng Q.-Y.; Yang M.; Dong X.; Zhang X.-F.; Cheng X.-L.; Huo L.-H.; Major Z.; Xu Y.-M. Rare Metals 2023, 42, 536.
[1]
(d) Miao Z.; Wang P.; Zhong A.; Yang M.; Xu Q.; Hao S.; Hu X. J. Electroanal. Chem. 2015, 756, 153.
[2]
(a) Zhu A.; Zhang J.; Situ B.; Ma Y.; Ji Z.; Peng Z.; Yan Z.; Tu Y. J. Polym. Res. 2023, 30, 417.
[2]
(b) Zhang W.; Xia T.; Huo X.; Li X.; Park S.; Lin L.; Diao G.; Piao Y. J. Electroanal. Chem. 2022, 920, 116615.
[2]
(c) Zhang W.; Kong Y.; Jin X.; Yan B.; Diao G.; Piao Y. Electrochim. Acta 2020, 331, 135345.
[2]
(d) Lyu L.; Chai H.; Seong K.-D.; Lee C.; Kang J.; Zhang W.; Piao Y. Electrochim. Acta 2018, 291, 256.
[3]
(a) Sun P.; Shen X.; Xu P.; Huang W.; Xu Q. Appl. Surf. Sci. 2024, 655, 159649.
[3]
(b) Chen Y.; Lei J.; Zhai Y.; Zhu Z.; Wu W.; Lu X. Chin. Chem. Lett. 2023, 34, 108305.
[3]
(c) Zhang T.; Zhang P.; Liao Z.; Wang F.; Wang J.; Wang M.; Zschech E.; Zhuang X.; Schmidt O. G.; Feng X. Chin. Chem. Lett. 2022, 33, 3921.
[3]
(d) Gautam J.; Liu Y.; Gu J.; Ma Z.; Dahal B.; Chishti A. N.; Ni L.; Diao G.; Wei Y. J. Colloid Interface Sci. 2022, 614, 642.
[4]
(a) Yuan G.; Xi Z.; Wang C.; Sun X.; Han J.; Guo R. Acta Phys.-Chim. Sin. 2023, 39, 2212061.
[4]
(b) Li W.; Wang F.; Shi Y.; Yu L. Chin. Chem. Lett. 2023, 34, 107505.
[4]
(c) Zeng Z.; Chen Y.; Zhu X.; Yu L. Chin. Chem. Lett. 2023, 34, 107728.
[4]
(d) Zhang Y.; Sun H.; Chen Y.; Shi Y.; Yu L. Org. Lett. 2023, 25, 7928.
[4]
(e) Chen Y.; Yu L.; Zhou H. J. Phys. Chem. C 2022, 126, 17084.
[5]
(a) Li X.; Liu H.; Meng S.; Liu X.; Liu X.; He R.; Wang F. Cream. Int. 2024, 50, 12361.
[5]
(b) Yu S.; Liu Y.; Mo R.; Li Y.; Zhou Z.; Zhang L.; Fan B.; Cao Y. New J. Chem. 2024, 48, 4810.
[5]
(c) Yu H.; Xu Z.; Fang T.; Zhang M.; Xu Y.; Liu J.; Tan X. Polym. Adv. Technol. 2024, 35, e6307.
[5]
(d) Li C.; Li Y.; Chen Q.; Sun D.; Li H.; Chen W.; Yan J.; Wu G.; Yuan X.; Wang S.; He Y.; Yu H. Prog. Org. Coat. 2024, 187, 108173.
[6]
Oh W. K.; Kim S.; Kwon O.; Jang J. J. Nanosci. Nanotechnol. 2011, 11, 4254.
[7]
(a) Zhou Y.; Zhang Y.-H.; Ma J.-S.; Yu M.-P.; Qiu H. Int. J. Miner.,Metall. Mater. 2018, 25, 1329.
[7]
(b) Li Y.; Cao S.; Fan L.; Han J.; Wang M.; Guo R. J. Colloid. Interface Sci. 2018, 527, 241.
[8]
(a) Zhang Y.; Li W.; Hu Z.; Jing X.; Yu L. Chin. Chem. Lett. 2024, 35, 108938.
[8]
(b) Meng X.; Zhang Y.; Zhou H.; Yu L. ACS Sustainable Chem. Eng. 2022, 10, 7658.
[9]
(a) Han H. B.; Zhou S. S.; Zhang D. J.; Feng S.-W.; Li L.-F.; Liu K.; Feng W.-F.; Nie J.; Li H.; Huang X.-J.; Armand M.; Zhou Z.-B. J. Power Sources 2011, 196, 3623.
[9]
(b) Ghosh S. K.; Waghoo G.; Kalita A.; Balgude D.; Kumar K. R. Prog. Org. Coat. 2012, 73, 70.
[9]
(c) Liu J.; Cai Y.; Pang H.; Cao B.; Luo C.; Hu Z.; Xiao C.; Zhang H.; Lv F.; Cao Y.; Yu L. Chin. Chem. Lett. 2022, 33, 4061.
[10]
(a) Pei C.; Chen S.; Fu D.; Zhao Z.-J.; Gong J. Chem. Rev. 2024, 124, 2955.
[10]
(b) Gu Y.; Wang L.; Xu B.-Q.; Shi H. Chin. J. Catal. 2023, 54, 1.
[10]
(c) Yang F.; Tian X.; Luo W.; Feng L. Coord. Chem. Rev. 2023, 478, 214980.
[11]
(a) Liu Y.; Tang D.; Cao K.; Yu L.; Han J.; Xu Q. J. Catal. 2018, 360, 250.
[11]
(b) Chen Y.; Li L.; Zhang L.; Han J. Colloid Polym. Sci. 2018, 296, 567.
[11]
(c) Shi F.; Yan F.; Zhang X.; Liu R.; Jiang G.; Li J.; Malinick A.; Cheng Q.; Yang Z. Chem. Commun. 2023, 59, 8294.
[12]
Li H.-F.; Yu K.-W.; Jing X.-B.; Duan L.; Zhang Y.-Y. Rare Metals 2024, 43, 1337.
[13]
(a) Li H.; Cao H.; Chen T.; Zhang X.; Shi Y. Mol. Catal. 2020, 483, 110715.
[13]
(b) Qiu C.; Sun Y.; Xu Y.; Zhang B.; Zhang X.; Yu L.; Su C. ChemSusChem 2021, 14, 3344.
[13]
(c) Yan J.; Fang W.; Wei Z.; Chi J.; Chen M.; Jiang Z.; Jiang K.; Shen S.; Shangguan W. Appl. Catal., B 2023, 339, 123155.
[13]
(d) Wang Y.; Ma J.-X.; Ren J.; Zhang D.; Xu F.-Y.; Zhang K.; Cao Z.-Q.; Sun Q.-J.; Li G.-D.; Wu S.-W.; Chen H.-H. Rare Metals 2024, 43, 2648.
[14]
(a) Gallo-Rodriguez C.; Rodríguez J. B. Synthesis 2024, 56, 2295.
[14]
(b) Pacu?a-Miszewska A. J.; Sancineto L. In Organochalcogen Compounds, Eds.: Lenard?o, E. J.; Santi, C.; Perin, G.; Alves, D. Elsevier, 2022, Chapter 7, p 219.
[14]
(c) Xiao X.; Guan C.; Xu J.; Fu W.; Yu L. Green Chem. 2021, 23, 4647.
[14]
(d) H. Cao, R. Qian, L. Yu, Catal. Sci. Technol. 2020, 10, 3113.
[14]
(e) Singh F. V.; Wirth T. Catal. Sci. Technol. 2019, 9, 1073.
[14]
(f) Shao L.; Li Y.; Lu J.; Jiang X. Org. Chem. Front. 2019, 6, 2999.
[14]
(g) Guo R.; Liao L.; Zhao X. Molecules 2017, 22, 835.
[15]
(a) Chen X.; Zhuang S.; Yan W.; Zeng Z.; Feng J.; Cao H.; Yu L. Chin. Chem. Lett. 2024, 35, 109635.
[15]
(b) Zhou W.; Li P.; Liu J.; Yu L. Ind. Eng. Chem. Res. 2020, 59, 10763.
[15]
(c) Yang Y.; Fan X.; Cao H.; Chu S.; Zhang X.; Xu Q.; Yu L. Catal. Sci. Technol. 2018, 8, 5017.
[15]
(d) Li P.; Cao K.; Jing X.; Liu Y.; Yu L. New J. Chem. 2021, 45, 17241.
[16]
(a) Chen X.; Mao J.; Liu C.; Chen C.; Cao H.; Yu L. Chin. Chem. Lett. 2020, 31, 3205.
[16]
(b) Zhu Z.; Wang W.; Zeng L.; Zhang F.; Liu J. Catal. Commun. 2020, 142, 106031.
[16]
(c) Liu M.; Zhang X.; Chu S.; Ge Y.; Huang T.; Liu Y.; Yu L. Chin. Chem. Lett. 2022, 33, 205.
[17]
Yong D.; Tian J.; Yang R.; Wu Q.; Zhang X. Chin. J. Org. Chem. 2024, 44, 1343 (in Chinese).
[17]
(雍达明, 田杰, 杨瑞洪, 吴启超, 张旭, 有机化学, 2024, 44, 1343.)
[18]
Zhang Y.; Sun H.; Yang Y.; Li H.; Shi Y.; Yu L. Catal. Sci. Technol. 2023, 13, 3791.
[19]
(a) Yuan Y.; Zhang S.; Sun Z.; Su Y.; Ma Q.; Yuan Y.; Jia X. Org. Lett. 2020, 22, 6294.
[19]
(b) Lv B.; Gao P.; Zhang S.; Jia X.; Wang M.; Yuan Y. Org. Chem. Front. 2021, 8, 5440.
[19]
(c) Lu Q.; Shi G.; Zhou H.; Yuan E.; Chen C.; Ji L. Appl. Catal., A 2022, 630, 118441.
[19]
(d) Chen Y.; Chen C.; Liu Y.; Yu L. Chin. Chem. Lett. 2023, 34, 108489.
[19]
(e) Li X.; Hua H.; Liu Y.; Yu L. Org. Lett. 2023, 25, 6720.
[20]
(a) Liu F.; Feng G.; Lin M.; Wang C.; Hu B.; Qi C. J. Colloid Interface Sci. 2014, 435, 83.
[20]
(b) Liu F.; Zuo S.; Xia X.; Sun J.; Zou Y.; Wang L.; Li C.; Qi C. J. Mater. Chem. A 2013, 1, 4089.
[20]
(c) Wang H.; Kong W.; Zhu W.; Wang L.; Yang S.; Liu F. Catal. Commun. 2014, 50, 87.
[20]
(d) Yu L.; Han Z.; Ding Y. Org. Process Res. Dev. 2016, 20, 2124.
[21]
Kantam M. L.; Roy M.; Roy S.; Sreedhar B.; Madhavendra S. S.; Choudary B. M.; De R. L. Tetrahedron 2007, 63, 8002.
[22]
Gao G.; Han J.; Yu L.; Xu Q. Synlett 2019, 30, 1703.
[23]
(a) Xu T.-Y.; Zhang Q.-F.; Jiang D.-H.; Liang Q.-X.; Lu C.-S.; Cen J.; Li X.-N. RSC Adv. 2014, 4, 33347.
[23]
(b) Ding X.; Li M.; Jin J.; Huang X.; Wu X.; Feng L. Chin. Chem. Lett. 2022, 33, 2687.
[23]
(c) Qiao W.; Zha M.; Yang Y.; Hu G.; Feng L. Chem. Commun. 2022, 58, 10651.
[23]
(d) Xue J.; Wu X.; Feng L. Chem. Commun. 2022, 58, 2371.
[23]
(e) Feng Y.; Lu S.; Fu L.; Yang F.; Feng L. Chem. Sci. 2024, 15, 2123.
[24]
Yu L.; Huang Y.; Wei Z.; Ding Y.; Su C.; Xu Q. J. Org. Chem. 2015, 80, 8677.
[25]
(a) Schweitzer-Chaput B.; Sud A.; Pintér á.; Dehn S.; Schulze P.; Klussmann M. Angew. Chem., Int. Ed. 2013, 52, 13228.
[25]
(b) Lippincott D. J.; Trejo-Soto P. J.; Gallou F.; Lipshutz B. H. Org. Lett. 2018, 20, 5094.
[25]
(c) Cao H.; Li P.; Jing X.; Zhou H. Chin. J. Org. Chem. 2022, 42, 3890 (in Chinese).
[25]
(曹洪恩, 李培梓, 景崤壁, 周宏伟, 有机化学, 2022, 42, 3890.)
[25]
(d) Wang F.; Qian R.; Yu L. React. Chem. Eng. 2023, 8, 849.
[26]
(a) Deng X.; Qian R.; Zhou H.; Yu L. Chin. Chem. Lett. 2021, 32, 1029.
[26]
(b) Liu F.; Zhan J.; Sun Y.; Jing X. Chin. J. Org. Chem. 2021, 41, 2099 (in Chinese).
[26]
(刘峰, 詹杰, 孙扬阳, 景崤壁, 有机化学, 2021, 41, 2099.)
[26]
(c) Zhou W.; Xiao X.; Liu Y.; Zhang X. Chin. J. Org. Chem. 2022, 42, 1849 (in Chinese).
[26]
(周文见, 肖芯蕊, 刘永红, 张旭, 有机化学, 2022, 42, 1849.)
[26]
(d) Zhang X.; Zuo T.; Yu L. ChemistrySelect 2022, 7, e202203514.
[27]
(a) Das T. N. J. Phys. Chem. A 2005, 109, 3344.
[27]
(b) Zhang X.; Wei Z.; Yu L. React. Chem. Eng. 2023, 8, 1700.
[28]
Mu S.; Chen C.; Wang J. Synth. Met. 1997, 88, 249.
[29]
(a) Xiao X.; Shao Z.; Yu L. Chin. Chem. Lett. 2021, 32, 2933.
[29]
(b) Ding W.; Wang S.; Gu J.; Yu L. Chin. Chem. Lett. 2023, 34, 108043.
[29]
(c) Xian L.; Li Q.; Li T.; Yu L. Chin. Chem. Lett. 2023, 34, 107878.
[29]
(d) Yin Y.; Quan X.; Cheng Y.; Yang Z.; Zhu J.; Fang W. Food Chem. 2023, 426, 136603.
[29]
(e) Li J.; Shi Q.; Xue Y.; Zheng M.; Liu L.; Geng T.; Gong D.; Zhao M. Chin. Chem. Lett. 2024, 35, 109239.
[30]
(a) Lu F.-D.; Chen J.; Jiang X.; Chen J.-R.; Lu L.-Q.; Xiao W.-J. Chem. Soc. Rev. 2021, 50, 12808.
[30]
(b) Firsan S. J.; Sivakumar V.; Colacot T. J. Chem. Rev. 2022, 122, 16983.
[30]
(c) Wang Y.; He Y.; Zhu S. Acc. Chem. Res. 2023, 56, 3475.
[30]
(d) Zeng Z.; Liao C.; Yu L. Chin. Chem. Lett. 2024, 35, 109349.
[31]
Dilauro G.; García S. M.; Tagarelli D.; Vitale P.; Perna F. M.; Capriati V. ChemSusChem 2018, 11, 3495.
[32]
Barbero M.; Dughera S. Tetrahedron 2018, 74, 5758.
文章导航

/