研究论文

N,N-二甲基乙醇胺为单碳合成子构建3,5-二芳基吡啶的新方法

  • 张鑫宇 ,
  • 陈静 ,
  • 马永敏
展开
  • a 浙江中医药大学药学院 杭州 310053
    b 台州学院药学院 浙江台州 318000

收稿日期: 2024-05-07

  修回日期: 2024-05-24

  网络出版日期: 2024-07-02

Construction of 3,5-Diarylpyridine Derivatives Using N,N-Dimethyl-ethanolamine as a Single-Carbon Synthon

  • Xinyu Zhang ,
  • Jing Chen ,
  • Yongmin Ma
Expand
  • a School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053
    b School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000
*Corresponding author. E-mail:

Received date: 2024-05-07

  Revised date: 2024-05-24

  Online published: 2024-07-02

摘要

开发了一种以苯乙炔或苯乙醛, 氯化铵和N,N-二甲基乙醇胺为原料, 在140 ℃条件下经三氟甲磺酸铁催化发生[2+2+1+1]环化反应, 其中N,N-二甲基乙醇胺既作为溶剂又作为单碳合成子参与构建3,5二芳基吡啶类化合物.

本文引用格式

张鑫宇 , 陈静 , 马永敏 . 以N,N-二甲基乙醇胺为单碳合成子构建3,5-二芳基吡啶的新方法[J]. 有机化学, 2024 , 44(11) : 3409 -3416 . DOI: 10.6023/cjoc202405008

Abstract

3,5-Diarylpyridines were effectively synthesized via [2+2+1+1] cyclization reaction catalyzed by Fe(OTf)3 at 140 ℃, using phenylacetylenes or phenylacetaldehydes, ammonium chloride and N,N-dimethylethanolamine as starting materials. N,N-Dimethylethanolamine was employed as both solvent and a single carbon synthon.

参考文献

[1]
(a) Olbe L.; Carlsson E.; Lindberg P. Nat. Rev. Drug Discovery 2003, 2, 132.
[1]
(b) Roughley S. D.; Jordan A. M. J. Med. Chem. 2011, 54, 3451.
[1]
(c) Altaf A. A.; Shahzad A.; Gul Z.; Rasool N.; Badshah A.; Lal B.; Khan E. J. Drug Des. Med. Chem. 2015, 1, 1.
[1]
(d) Hudson G. A.; Hooper A. R.; DiCaprio A. J.; Sarlah D.; Mitchell D. A. Org. Lett. 2021, 23, 253.
[1]
(e) Kajita Y.; Ikeda S.; Yoshikawa M.; Fukuda H.; Watanabe E.; Yano J.; Lane W.; Miyamoto M.; Ishii T.; Nishi T.; Koike T. J. Med. Chem. 2022, 65, 3343.
[2]
(a) Kumar A.; Rhodes R.; Spychala J.; Wilson W.; Boykin D.; Tidwell R.; Dykstra C.; Hall J.; Jones S.; Schinazi R. Eur. J. Med. Chem. 1995, 30, 99.
[2]
(b) Lucas S.; Negri M.; Heim R.; Zimmer C.; Hartmann R. W. J. Med. Chem. 2011, 54, 2307.
[2]
(c) Hibi S.; Ueno K.; Nagato S.; Kawano K.; Ito K.; Norimine Y.; Takenaka O.; Hanada T.; Yonaga M. J. Med. Chem. 2012, 55, 10584.
[2]
(d) Mohedas A. H.; Wang Y.; Sanvitale C. E.; Canning P.; Choi S.; Xing X.; Bullock A. N.; Cuny G. D.; Yu P. B. J. Med. Chem. 2014, 57, 7900.
[2]
(e) Reimann S.; Parpart S.; Ehlers P.; Sharif M.; Spannenberg A.; Langer P. Org. Biomol. Chem. 2015, 13, 6832.
[3]
(a) van der Ark A. M.; Verweij A. M. A.; Sinnema A. J. Forensic Sci. 1978, 23, 693.
[3]
(b) Tagat J. R.; McCombie S. W.; Barton B. E.; Jackson J. V.; Shortall J. Bioorg. Med. Chem. Lett. 1995, 5, 2143.
[3]
(c) Aida W.; Ohtsuki T.; Li X.; Ishibashi M. Tetrahedron 2009, 65, 369.
[3]
(d) Carroll F. I.; Ma W.; Deng L.; Navarro H. A.; Damaj M. I.; Martin B. R. J. Nat. Prod. 2010, 73, 306.
[3]
(e) Zhang E.; Wang M.; Xu S.; Wang S.; Zhao D.; Bai P.; Cui D.; Hua Y.; Wang Y.; Qin S.; Liu H. Chin. J. Org. Chem. 2017, 37, 959 (in Chinese).
[3]
(张恩, 王铭铭, 徐帅民, 王上, 赵娣, 白鹏燕, 崔得运, 化永刚, 王亚娜, 秦上尚, 刘宏民, 有机化学, 2017, 37, 959.)
[4]
(a) Fang Z.; Zheng S.; Chan K. F.; Yuan W.; Guo Q.; Wu W.; Lui H. K.; Lu Y.; Leung Y. C.; Chan T. H.; Wong K. Y.; Sun N. Eur. J. Med. Chem. 2019, 161, 141.
[4]
(b) Zhao P.; Liu Y.; Zhang Y.; Wang L.; Ma Y. Org. Lett. 2024, 26, 2511.
[4]
(c) Zhang R.; Ding Y.; Ma R.; Xiao X.; Chen R.; Wang L.; Ma Y. Org. Chem. Front. 2023, 10, 780.
[5]
(a) O'Hagan D. Nat. Prod. Rep. 2001, 17, 435.
[5]
(b) De Rycke N.; Couty F.; David O. R. P. Chem.-Eur. J. 2011, 17, 12852.
[5]
(c) Zhang R.; Ma R.; Chen R.; Wang L.; Ma Y. J. Org. Chem. 2024, 89, 1846.
[5]
(d) Fang J.; Fang J.; Rao Y.; Qiu H.; Pan Z.; Ma Y. Org. Biomol. Chem. 2024, 22, 2043.
[5]
(e) Liu Q.; Shi L.; Liu N. P. Chin. J. Org. Chem. 2019, 39, 2882 (in Chinese).
[5]
(刘铨瑶, 石磊, 刘宁, 有机化学, 2019, 39, 2882.)
[6]
(a) Chelucci G. Chem. Soc. Rev. 2006, 35, 1230.
[6]
(b) Gibson V. C.; Redshaw C.; Solan G. A. Chem. Rev. 2007, 107, 1745.
[6]
(c) Michaelos T. K.; Shopov D. Y.; Sinha S. B.; Sharninghausen L. S.; Fisher K. J.; Lant H. M. C.; Crabtree R. H.; Brudvig G. W. Acc. Chem. Res. 2017, 50, 952.
[6]
(d) Zhang R.; Ma R.; Fu Q.; Chen J.; Ma Y. Chin. J. Org. Chem. 2022, 42, 854 (in Chinese).
[6]
(张瑞芹, 马仁超, 傅琴姣, 陈静, 马永敏, 有机化学, 2022, 42, 854.)
[7]
(a) Lewis D. E. Angew. Chem., Int. Ed. 2017, 56, 9660.
[7]
(b) Yan R.; Zhou X.; Li M.; Li X.; Kang X.; Liu X.; Huo X.; Huang G. RSC Adv. 2014, 4, 50369.
[7]
(c) Li Z.; Huang X.; Chen F.; Zhang C.; Wang X.; Jiao N. Org. Lett. 2015, 17, 584.
[7]
(d) Al Mehedi M. S.; George D. E.; Tepe J. J. J. Org. Chem. 2022, 87, 16820.
[8]
Ranjani G.; Nagarajan R. Org. Lett. 2017, 19, 3974.
[9]
Chuang T. H.; Chen Y. C.; Pola S. J. Org. Chem. 2010, 75, 6625.
[10]
(a) Komatsu M.; Ohgishi H.; Takamatsu S.; Ohshiro Y.; Agawa T. Angew. Chem., Int. Ed. 2003, 21, 213.
[10]
(b) Vijn R. J.; Arts H. J.; Green R.; Castelijns A. Synthesis 1994, 1994, 573.
[10]
(c) Balasubrahmanyam S. N.; Jeyashri B.; Namboothiri I. N. N. Tetrahedron 1994, 50, 8127.
[11]
Palacios F.; Alonso C.; Rubiales G.; Ezpeleta J. M. Eur. J. Org. Chem. 2001, 2001, 2115.
[12]
(a) Sathish M.; Chetna J.; Hari Krishna N.; Shankaraiah N.; Alarifi A.; Kamal A. J. Org. Chem. 2016, 81, 2159.
[12]
(b) Li J.; Sun L.; Zhao Y.; Shi C. Chin. J. Org. Chem. 2023, 43, 4168 (in Chinese).
[12]
(李进京, 孙立娇, 赵岩, 史成阳, 有机化学, 2023, 43, 4168.)
[13]
(a) Wang Q.; Wan C.; Gu Y.; Zhang J.; Gao L.; Wang Z. Green Chem. 2011, 13, 578.
[13]
(b) Xiang J. C.; Wang M.; Cheng Y.; Wu A. X. Org. Lett. 2016, 18, 24.
[14]
Su M. D.; Liu H. P.; Cao Z. Z.; Liu Y.; Li H.; Nie Z. W.; Yang T. L.; Luo W. P.; Liu Q.; Guo C. C. J. Org. Chem. 2021, 86, 13446.
[15]
(a) Mehmood H.; Iqbal M. A.; Ashiq M. N.; Hua R. Molecules 2021, 26, 6599.
[15]
(b) Li H.; Yan S.; Xu Y.; Ma C.; Zhang X.; Fan X. Org. Chem. Front. 2024, 11, 1917.
[15]
(c) Jia R.; Li B.; Zhang X.; Fan X. Org. Lett. 2020, 22, 6810.
[15]
(d) Gao H.; Zhou L.; Wan J. P.; Liu Y. J. Org. Chem. 2023, 88, 7188.
[15]
(e) Zhu B.; He J.; Zou K.; Li A.; Zhang C.; Zhao J.; Cao H. J. Org. Chem. 2023, 88, 11450.
[16]
(a) Yan M.; Hider R. C.; Ma Y. Org. Chem. Front. 2019, 6, 1168.
[16]
(b) Yan M.; Ma R.; Chen R.; Wang L.; Wang Z.; Ma Y. Chem. Commun. 2020, 56, 10946.
[16]
(c) Qin Z.; Zhang R.; Ying S.; Ma Y. Org. Chem. Front. 2022, 9, 5624.
[16]
(d) Qin Z.; Ma R.; Ying S.; Li F.; Ma Y. Adv. Synth. Catal. 2022, 364, 3263.
[16]
(e) Geng M.; Kuang J.; Fang W.; Xiao X.; Ma Y. Org. Chem. Front. 2024, 11, 1198.
[17]
(a) Barrios-Bermudez N.; Gonzalez-Avendano M.; Lado-Tourino I.; Cerpa-Naranjo A.; Rojas-Cervantes M. L. Nanomaterials 2020, 10, 749.
[17]
(b) Ma B.; Wang S.; Liu F.; Zhang S.; Duan J.; Li Z.; Kong Y.; Sang Y.; Liu H.; Bu W.; Li L. J. Am. Chem. Soc. 2019, 141, 849.
[17]
(c) Ma R.; Zhang R.; Xia H.; Wang L.; Ma Y. Eur. J. Org. Chem. 2024, 27, e202400089.
[17]
(d) Yamaguchi R.; Kurosu S.; Suzuki M.; Kawase Y. Chem. Eng. J. 2018, 334, 1537.
[18]
De Giorgi M.; Voisin-Chiret A. S.; Sopková-de Oliveira Santos J.; Corbo F.; Franchini C.; Rault S. Tetrahedron 2011, 67, 6145.
[19]
Avitia B.; MacIntosh E.; Muhia S.; Kelson E. Tetrahedron Lett. 2011, 52, 1631.
[20]
Hachey A. C.; Fenton A. D.; Heidary D. K.; Glazer E. C. J. Med. Chem. 2023, 66, 398.
文章导航

/