三苯胺-吩噻嗪衍生物掺杂聚合物的光诱导室温磷光
收稿日期: 2024-04-10
修回日期: 2024-06-23
网络出版日期: 2024-07-10
基金资助
国家自然科学基金(22305172); 中国博士后科学基金(2023M732586); 中国博士后科学基金(2024T170640); 国家资助博士后研究人员计划(GZB20230509)
Photoinduced Room-Temperature Phosphorescence of Triphenylamine-Phenothiazine Derivative-Doped Polymers
Received date: 2024-04-10
Revised date: 2024-06-23
Online published: 2024-07-10
Supported by
National Natural Science Foundation of China(22305172); China Postdoctoral Science Foundation(2023M732586); China Postdoctoral Science Foundation(2024T170640); Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF)(GZB20230509)
在刺激响应发光材料领域, 以光作为刺激源的光诱导室温磷光(RTP)材料因其非接触式读写和应用范围广而引起广泛关注. 然而, 这类材料目前仍相对稀少, 开发新型高效光响应RTP分子具有重要意义. 通过Buchwald-Hartwig C—N偶联反应成功合成了三个吩噻嗪衍生物TPA-PTZ、TPA-2PTZ和TPA-3PTZ. 将上述分子分别作为发色单元掺杂到聚甲基丙烯酸甲酯(PMMA)基质中, 制备了具有优异光诱导RTP性能的高分子薄膜. 其中, TPA-PTZ掺杂薄膜在持续的紫外线照射后, 量子产率增加了19倍, 达到了5.68%. 与此同时, 这些材料还具备优越的光稳定性和热稳定性, 在长时间的紫外线照射(365 nm, 500 μW•cm−2, 时间>200 s)或温度高达75 ℃的情况下, 仍可以保持较高强度的磷光. 这些光诱导RTP材料的独特性质, 赋予它们在发光显示、防伪以及先进光学材料领域较大的应用潜力.
李楠 , 王雲生 , 李振 . 三苯胺-吩噻嗪衍生物掺杂聚合物的光诱导室温磷光[J]. 有机化学, 2024 , 44(8) : 2487 -2494 . DOI: 10.6023/cjoc202404016
Photo-responsive room-temperature phosphorescent (RTP) materials have garnered significant interest due to the advantages of rapid response, spatiotemporal control, and contactless precision manipulation. However, the development of such materials remains in its infancy, underscoring the importance of exploiting novel and efficient light-responsive RTP molecules. In this work, three phenothiazine derivatives of TPA-PTZ, TPA-2PTZ, and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction. By embedding these molecules as RTP guests into polymethyl methacrylate (PMMA) matrix, photo-induced RTP properties were realized. Upon sustained UV irradiation, there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%. Remarkably, these materials exhibit superior alongside robust light and thermal stability, maintaining high phosphorescence intensity even after prolonged UV exposure (irradiation for>200 s by a 365 nm UV lamp with the power of 500 µW•cm-2) or at higher temperature up to 75 ℃. The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption, anti-counterfeiting, and advanced optical materials.
| [1] | Li, D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X.; Tian, H. J. Am. Chem. So.. 2018, 140, 1916. |
| [2] | Gmelch, M.; Thomas, H.; Fries, F.; Reineke, S. Sci. Ad.. 2019, 5, eaau7310. |
| [3] | Zhang, Z. Y.; Liu, Y. Chem. Sc.. 2019, 10, 7773. |
| [4] | Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Adv. Mate.. 2016, 28, 655. |
| [5] | Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser, C. L. Nat. Mate.. 2009, 8, 747; |
| [6] | Fan, Y.; Li, Q.; Li, Z. Sci. China Chem. 2023, 66, 2930. |
| [7] | Wang, J.; Huang, Z.; Ma, X.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 9928. |
| [8] | Baryshnikov, G.; Minaev, B.; Agren, H. Chem. Re.. 2017, 117, 6500. |
| [9] | Li, Y.; Gecevicius, M.; Qiu, J. Chem. Soc. Re.. 2016, 45, 2090. |
| [10] | Yang, Y.; Li, A.; Yang, Y.; Wang, J.; Chen, Y.; Yang, K.; Tang, B. Z.; Li, Z. Angew. Chem., Int. Ed. 2023, 62, e2023088. |
| [11] | Hamzehpoor, E.; Ruchlin, C.; Tao, Y.; Liu, C-H.; Titi, H. M.; Perepichka, D. F. Nat. Che.. 2023, 15, 83. |
| [12] | El-Sayed, M. A. J. Chem. Phy.. 1963, 38, 2834. |
| [13] | Yu, Z.; Wu, Y.; Xiao, L.; Chen, J.; Liao, Q.; Yao, J.; Fu, H. J. Am. Chem. So.. 2017, 139, 6376; |
| [14] | Lu, Y.; Wang, Y. ; Zhu, L.; Yue, B. Chin. J. Org. Chem. 2022, 42, 3549 (in Chinese). |
| [14] | (路云乐, 王彦杰, 朱亮亮, 岳兵兵, 有机化学, 2022, 42, 3549.) |
| [15] | Zhang, T.; Ma, X.; Tian, H. Chem. Sc.. 2020, 11, 482. |
| [16] | Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Mater. Chem. C 2014, 118, 15985. |
| [17] | Chen, C.; Huang, R.; Batsanov, A. S.; Pander, P.; Hsu, Y. T.; Chi, Z.; Dias, F. B.; Bryce, M. R. Angew. Chem., Int. Ed. 2018, 57, 16407. |
| [18] | Wang, Y.; Yang, J.; Fang, M.; Gong, Y.; Ren, J.; Tu, L.; Tang, B. Z.; Li, Z. Adv. Funct. Mate.. 2021, 31. 2101719. |
| [19] | Hirata, S.; Totani, K.; Zhang, J.; Yamashita, T.; Kaji, H.; Marder, S. R.; Watanabe, T.; Adachi, C. Adv. Funct. Mate.. 2013, 23, 3386. |
| [20] | Qin, C.; Liu, W.; Nie, Y.; Gao, Y.; Miao, J.; Li, T.; Jiang, X. Chin. J. Org. Chem. 2020, 40, 2232 (in Chinese). |
| [20] | (秦成远, 刘威, 聂永, 高迎, 苗金玲, 李天瑞, 蒋绪川, 有机化学, 2020, 40, 2232.) |
| [21] | Redondo, C. S.; Kleine, P.; Roszeitis, K.; Achenbach, T.; Kroll, M.; Thomschke, M.; Reineke, S. J. Phys. Chem. C 2017, 121, 14946. |
| [22] | Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z. Adv. Mate.. 2017, 29, 1606829. |
| [23] | Cheng, Z.; Shi, H.; Ma, H.; Bian, L.; Wu, Q.; Gu, L.; Cai, S.; Wang, X.; Xiong, W. W.; An, Z.; Huang, W. Angew. Chem., Int. Ed. 2018, 57, 678. |
| [24] | Ma, X.; Xu, C.; Wang, J.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 10854. |
| [25] | Yan, Z.; Zou, L.; Ma, X. Chin. J. Org. Chem. 2020, 40, 1814 (in Chinese). |
| [25] | (严子昂, 邹雷, 马骧, 有机化学, 2020, 40, 1814.) |
| [26] | Zhang, X.; Fu, X.; Dai, G.; Jin, H.; Zhang, X.; Bai, J.; Ma, J.; Ma, Z. Acta Polym. Si.. 2023, 54, 1624 (in Chinese). |
| [26] | (张兴达, 付晓华, 戴光阔, 靳惠雯, 张雪, 白景娟, 马佳欣, 马志勇, 高分子学报, 2023, 54, 1624.) |
| [27] | Gu, L.; Wang, X.; Singh, M.; Shi, H.; Ma, H.; An, Z.; Huang, W. J. Phys. Chem. Let.. 2020, 11, 6191. |
| [28] | Yang, J.; Fang, M.; Li, Z. Acc. Mater. Re.. 2021, 2, 644. |
| [29] | Katsurada, Y.; Hirata, S.; Totani, K.; Watanabe, T.; Vacha, M. Adv. Opt. Mate.. 2015, 3, 1726. |
| [30] | Liu, Y.; Ma, L.; Wang, Q.; Ma, X. Acta Chim. Sinic. 2023, 81, 445 (in Chinese). |
| [30] | (刘懿玮, 马良伟, 王巧纯, 马骧, 化学学报, 2023, 81, 445.) |
| [31] | Tian, Ye.; Si, D.; Gao, S.; Cao, R. Acta Chim. Sinic. 2023, 81, 1129 (in Chinese). |
| [31] | (田野, 司端惠, 高水英, 曹荣, 化学学报, 2023, 81, 1129.) |
| [32] | Morantz, D. J.; Young, R. J. Photoche.. 1978, 9, 274. |
| [33] | Liu, Z.; Tian, Y.; Yang, J.; Li, A.; Wang, Y.; Ren, J.; Fang, M.; Tang, B.; Li, Z. Light: Sci. Appl. 2022, 11, 142. |
/
| 〈 |
|
〉 |