研究论文

二氟化硼β-二酮类近红外荧光染料的设计、合成及细胞成像

  • 齐云鹏 ,
  • 刘伟 ,
  • 王俊龙 ,
  • 杜涛 ,
  • 矫淞霖
展开
  • 伊犁师范大学化学化工学院 新疆维吾尔自治区教育厅天然产物化学与应用重点实验室新疆生物质资源清洁转化与高值利用重点实验室 新疆伊宁 835000

收稿日期: 2024-04-22

  修回日期: 2024-06-01

  网络出版日期: 2024-07-10

基金资助

新疆维吾尔自治区自然科学基金(2022D01C338); 伊犁师范大学科研(2022HJYB05)

Design and Synthesis of Near-Infrared Fluorescent Dyes of Difluoroboron β-Diketonate and Cell Imaging

  • Yunpeng Qi ,
  • Wei Liu ,
  • Junlong Wang ,
  • Tao Du ,
  • Songlin Jiao
Expand
  • Key Laboratory of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining, Xinjiang 835000
*Corresponding author. E-mail:

Received date: 2024-04-22

  Revised date: 2024-06-01

  Online published: 2024-07-10

Supported by

Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C338); Scientific Research Project of Yili Normal University(2022HJYB05)

摘要

近红外(NIR)发光材料因具有生物组织穿透力强和光散射弱的独特优势在生物成像领域具有广泛应用的潜力. 通过增强分子内电荷转移策略设计合成了具有供体-受体(D-A)结构的二氟化硼β-二酮配合物(TPA-BF2-CN). TPA-BF2-CN具有溶剂依赖发光特性, 在稀溶液和固态下均具有较好的发光效率, 分别为11.1%和5.9%, 荧光发射波长最大峰值达760 nm, 处于NIR范围; 具有力致荧光变色性质, 研磨前后发射波长可红移107 nm; 还表现出双发射荧光现象, 两个发射峰分别位于400 nm的蓝光区和760 nm的NIR区, 其中NIR区的起止发射波长范围为690~850 nm. 相比于单通道荧光分子更具有避免环境因素干扰的优势. 细胞成像研究表明, TPA-BF2-CN对HeLa细胞相容性良好, 并且在整个HeLa细胞质区域中可观察到近红外发射信号. 因此, TPA-BF2-CN可作为一种活细胞成像荧光剂.

本文引用格式

齐云鹏 , 刘伟 , 王俊龙 , 杜涛 , 矫淞霖 . 二氟化硼β-二酮类近红外荧光染料的设计、合成及细胞成像[J]. 有机化学, 2024 , 44(11) : 3357 -3364 . DOI: 10.6023/cjoc202404032

Abstract

Near-infrared (NIR) luminescent materials have great potential in the field of bioimaging due to their unique advantages of strong tissue penetration and weak light scattering in biological tissues. In this study, a donor-acceptor (D-A) structured boron difluoride β-diketonate complex (TPA-BF2-CN) was designed and synthesized through the strategy of enhancing intramolecular charge transfer. This complex exhibits solvent-dependent luminescent properties. It demonstrates good luminescence efficiency in dilute solution and solid state with efficiencies of 11.1% and 5.9%, respectively. The maximum emission wavelength peaks at 760 nm, falling within the NIR range. The complex also possesses mechanochromic properties with a redshift of emission wavelength by 107 nm after grinding. TPA-BF2-CN exhibits dual emission fluorescence phenomenon with emission peaks located in the blue light region at 400 nm and the NIR region at 760 nm with an emission wavelength range of 690~850 nm in the NIR region. Compared to single-channel fluorescent molecules, it has the advantage of avoiding interference from environmental factors. Cell imaging studies demonstrate good compatibility of TPA-BF2-CN with HeLa cells, and NIR emission signals can be observed throughout the cytoplasmic region of HeLa cells. Therefore, TPA-BF2-CN can serve as a fluorescent probe for live cell imaging.

参考文献

[1]
Lei Z.; Zhang F. Angew. Chem., Int. Ed. 2021, 60, 16294.
[2]
Li H.; Kim Y.; Jung H.; Hyun J. Y.; Shin I. Chem. Soc. Rev. 2022, 51, 8957.
[3]
Chen Y.; Chen S.; Yu H.; Wang Y.; Cui M.; Wang P. Adv. Healthcare Mater. 2022, 11, 2201158.
[4]
Wang Z.; Geng H.; Nie C.; Xing C. Chin. J. Chem. 2022, 40, 759.
[5]
He Y.; Liao S.; Wang Y. Chin. J. Chem. 2021, 39, 1435.
[6]
He X. M.; Yuan F.; Zhang S. Y.; Zhang J. J. Acta Chim. Sinica 2023, 81, 1515 (in Chinese).
[6]
(贺晓梦, 袁方, 张素雅, 张健健, 化学学报, 2023, 81, 1515.)
[7]
Boens N.; Leen V.; Dehaen W. Chem. Soc. Rev. 2012, 41, 1130.
[8]
Beija M.; Afonso C. A. M.; Martinho J. M. G. Chem. Soc. Rev. 2009, 38, 2410.
[9]
Wan Y.; Lu G.; Wei W. C.; Huang Y. H.; Li S.; Chen J. X. ACS Nano 2020, 14, 9917.
[10]
Li L.; Shao C.; Liu T.; Chao Z.; Chen H.; Xiao F. Adv. Mater. 2020, 32, 2003471.
[11]
Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Chen H.; Tang B. Z. Chem. Commun. 2001, 18, 1740.
[12]
Mei J.; Hong Y.; Lam J. W. Y.; Qin A.; Tang Y.; Tang B. Z. Adv. Mater. 2014, 26, 5429.
[13]
Mei J.; Leung N. L. C.; Kwok R. T. K.; Lam J. W. Y.; Tang B. Z. Chem. Rev. 2015, 115, 11718.
[14]
Xu W.; Wang D.; Tang B. Z. Angew. Chem., Int. Ed. 2021, 60, 7476.
[15]
Collot M. Mater. Horiz. 2021, 8, 501.
[16]
Qi Y.; Wang Y.; Ge G.; Liu Z.; Yu Y.; Xue M. J. Mater. Chem. C 2017, 5, 11030.
[17]
Qi Y.; Wang Y.; Yu Y.; Liu Z.; Zhang Y.; Du G. RSC Adv. 2016, 6, 33755.
[18]
Qi Y.; Liu W.; Wang Y.; Ma L.; Yu Y.; Zhang Y. New J. Chem. 2018, 42, 11373.
[19]
Yu C. J.; Huang Z. L.; Wang X. R.; Miao W.; Wu Q. H.; Wong W. Y. Org. Lett. 2018, 20, 4462.
[20]
Lv X.; Wu Y.; Zhang B. R.; Guo W. Acta Chim. Sinica 2023, 81, 359 (in Chinese).
[20]
(吕鑫, 吴仪, 张勃然, 郭炜, 化学学报, 2023, 81, 359.)
[21]
Cui L.; Shinjo H.; Ichiki T.; Deyama K.; Harada T.; Ishibashi K. Angew. Chem., nt. Ed. 2022, 61, e202204358.
[22]
Mirochnik A. G.; Puzyrkov Z. N.; Fedorenko E. V.; Svistunova I. V.; Markova A. A.; Shibaeva A. V. Spectrochim. Acta, Part A 2023, 291, 122319.
[23]
Fabian J.; Hartmann H. J. Phys. Org. Chem. 2004, 17, 359.
[24]
Chen P. Z.; Niu L. Y.; Chen Y. Z.; Yang Q. Z. Coord. Chem. Rev. 2017, 350, 196.
[25]
Cao J.-J. Ph.D. Dissertation, Jilin University, Changchun, 2023 (in Chinese).
[25]
(曹靖劼, 博士论文, 吉林大学, 长春, 2023.)
[26]
Liu N.; Chen P. Z.; Wang J. X.; Niu L. Y.; Yang Q. Z. Chin. Chem. Lett. 2019, 30, 1939.
[27]
Felouat A.; D’Aléo A.; Fages F. J. Org. Chem. 2013, 78, 4446.
[28]
Hu R.; Lager E.; Aguilar-Aguilar A.; Liu J.; Lam J. W. Y.; Sung H. H. Y. J. Phys. Chem. C 2009, 113, 15845.
[29]
Zeng Q.; Li Z.; Dong Y.; Di C.; Qin A.; Hong Y. Chem. Commun. 2007, 70.
[30]
Liu J.; He T.; Gong Z. L.; Liang N.; Feng Y.; Long G. Adv. Opt. Mater. 2023, 12, 2302486.
[31]
Zhao Y.; Chen P.; Han L.; Wang E. Chin. J. Org. Chem. 2023, 43, 2454 (in Chinese).
[31]
(赵洋, 陈盼盼, 韩立志, 王恩举, 有机化学, 2023, 43, 2454.)
[32]
Zhang G.; Lu J.; Sabat M.; Fraser C. L. J. Am. Chem. Soc. 2010, 132, 2160.
[33]
Yoon S.-J.; Chung J. W.; Gierschner J.; Kim K. S.; Choi M.-G.; Kim D. J. Am. Chem. Soc. 2010, 132, 13675.
[34]
Cai F. Z.; Xu Y. L.; Zhou L.; Xu B. S.; Chen H.; Sun J. Q. Chin. J. Appl. Chem. 2020, 37, 440 (in Chinese).
[34]
(蔡丰泽, 徐永玲, 周乐, 许丙嵩, 陈浩, 孙建强, 应用化学, 2020, 37, 440.)
[35]
Qiu Q. Q.; Xu P. F.; Zhu Y. J.; Yu J. R.; Wei M. R.; Xi W. B.; Feng H.; Chen J. R.; Qian Z. S. Chem.-Eur. J. 2019, 25, 15983.
文章导航

/