光促进1,4-萘醌的一锅三组分胺基芳基化反应研究
收稿日期: 2024-05-04
修回日期: 2024-06-07
网络出版日期: 2024-07-10
基金资助
国家自然科学基金(21762041); 国家自然科学基金(21861036); 国家自然科学基金(21961037); 新疆维吾尔自治区自然科学基金(2023B02008-3); 新疆维吾尔自治区自然科学基金(2022E01042); 新疆维吾尔自治区自然科学基金(2022TSYCCX0024); 新疆维吾尔自治区自然科学基金(2021D01E10)
Study on the Light Promoted One-Pot Three Component Aminoarylation Reaction of 1,4-Naphthoquinone
Received date: 2024-05-04
Revised date: 2024-06-07
Online published: 2024-07-10
Supported by
National Natural Science Foundation of China(21762041); National Natural Science Foundation of China(21861036); National Natural Science Foundation of China(21961037); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023B02008-3); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022E01042); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022TSYCCX0024); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2021D01E10)
王斌 , 韩万仓 , 张永红 , 夏昱 , 金伟伟 , 陈子仁 , 武少峰 , 刘晨江 . 光促进1,4-萘醌的一锅三组分胺基芳基化反应研究[J]. 有机化学, 2024 , 44(11) : 3375 -3385 . DOI: 10.6023/cjoc202405001
1,4-Naphthoquinone, as a core skeleton exists in many bioactive molecules and has a wide range of applications in medicine, biology, cosmetics, and other synthetic materials. A photochemically synthetic method for aminoaryl bifunctionalized 1,4-naphthoquinone compounds by using 1,4-naphthoquinone, amine, and aryl triazene as raw materials is developed. This method features the advantages of simple and easy to operate without the need for any metals, extra oxidants, or other additives. It only requires methanol as the solvent and purple LED irradiation to efficiently synthesize aminoarylated 1,4- naphthoquinone derivatives. The smooth progress of gram scale reactions further proves the practicality of this method.
| [1] | (a) Sunassee S. N.; Davies-Coleman M. T. Nat. Prod. Rep. 2012, 29, 513. |
| [1] | (b) Josey B. J.; Inks E. S.; Wen X.; Chou C. J. J. Med. Chem. 2013, 56, 1007. |
| [1] | (c) Xu K.; Wang P.; Wang L.; Liu C.; Xu S.; Cheng Y.; Wang Y.; Li Q.; Lei H. Chem. Biodiversity 2014, 11, 341. |
| [2] | (a) Ayla S. S.; Bahar H.; Yavuz S.; Hazer B.; Ibis C. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 438. |
| [2] | (b) Ravichandiran P.; Boguszewska-Czubara A.; Mas?yk M.; Bella A. P.; Subramaniyan S. A.; Johnson P. M.; Shim K. S.; Kim H. G.; Yoo D. J. ACS Sustainable Chem. Eng. 2019, 7, 17210. |
| [3] | (a) Aguilar-Martínez M.; Cuevas G.; Jiménez-Estrada M.; González I.; Lotina-Hennsen B; Macías-Ruvalcaba N. J. Org. Chem. 1999, 64, 3684. |
| [3] | (b) Neves A. P.; Barbosa C. C.; Greco S. J.; Vargas M. D.; Visentin L. C.; Pinheiro C. B.; Mangrich A. S.; Barbosa J. P.; da Costa G. L. J. Braz. Chem. Soc. 2009, 20, 712. |
| [3] | (c) Francisco A. I.; Casellato A.; Neves A. P.; Carneiro J. W. D. M.; Vargas M. D.; Visentin L. D. C.; Magalh?es A.; Camara C. A.; Pessoa C.; Costa-Lotufo L. V.; Marinho-Filho J. D. B.; De Moraes M. O. J. Braz. Chem. Soc. 2010, 21, 169. |
| [4] | (a) Fukuyama T.; Yang L. J. Am. Chem. Soc. 1989, 111, 8303. |
| [4] | (b) Andrus M. B.; Meredith E. L.; Simmons B. L.; Sekhar B. B. V. S.; Hicken E. J. Org. Lett. 2002, 4, 3549. |
| [4] | (c) Hoyt M. T.; Palchaudhuri R.; Hergenrother P. J. Invest. New Drugs 2011, 29, 562. |
| [4] | (d) Rasapalli S.; Jarugumilli G.; Yarrapothu G. R.; Golen J. A.; Rheingold A. L. Org. Lett. 2013, 15, 1736. |
| [4] | (e) Li S.; Wang H.; Li Y.; Deng J.; Lu C.; Shen Y.; Shen Y. ChemBioChem 2014, 15, 94. |
| [4] | (f) Nawrat C. C.; Kitson R. R. A.; Moody C. J. Org. Lett. 2014, 16, 1896. |
| [5] | (a) Huang H.-M.; Li Y.-J.; Dai Y.-P.; Yu W.-B.; Ye Q.; Gao J.-R. J. Chem. Res. 2013, 37, 34. |
| [5] | (b) Li X.; Himes R. A.; Prosser L. C.; Christie C. F.; Watt E.; Edwards S. F.; Metcalf C. S.; West P. J.; Wilcox K. S.; Chan S. S. L.; Chou C. J. J. Med. Chem. 2020, 63, 5865. |
| [6] | (a) Mathew N.; Karunan T.; Srinivasan L.; Muthuswamy K. Drug Dev. Res. 2009, 71, 188. |
| [6] | (b) Jali B. R.; Masud K.; Baruah J. B. Polyhedron 2013, 51, 75. |
| [6] | (c) You H.; Vegi S. R.; Lagishetti C.; Chen S.; Reddy R. S.; Yang X.; Guo J.; Wang C.; He Y. J. Org. Chem. 2018, 83, 4119. |
| [6] | (d) Batabyal M.; Kumar S. J. Org. Chem. 2023, 88, 7401. |
| [7] | (a) Francisco A. I.; Vargas M. D.; Carneiro J. W. Lanznaster M.; Torres J. C.; Camara C. A.; Pinto A. C. J. Mol. Struct. 2008, 891, 228. |
| [7] | (b) Lisboa C. da. S.; Santos V. G.; Vaz B. G.; de Lucas N. C.; Eberlin M. N.; Garden S. J. J. Org. Chem. 2011, 76, 5264. |
| [7] | (c) Janeczko M.; Demchuk O. M.; Strzelecka D.; Kubins?ki K.; Mas?yk M. Eur. J. Med. Chem. 2016, 124, 1019. |
| [7] | (d) Zeng F.-L.; Chen X.-L.; He S.-Q.; Sun K.; Liu Y.; Fu R.; Qu L.-B.; Zhao Y.-F.; Yu B. Org. Chem. Front. 2019, 6, 1476. |
| [8] | (a) Yin J.; Liebeskind L. S. J. Org. Chem. 1998, 63, 5726. |
| [8] | (b) Narayan S.; Roush W. R. Org. Lett. 2004, 6, 3789. |
| [8] | (c) Lumb J.-P.; Trauner D. Org. Lett. 2005, 7, 5865. |
| [8] | (d) Kuttruff C. A.; Geiger S.; Cakmak M.; Mayer P.; Trauner D. Org. Lett. 2012, 14, 1070. |
| [8] | (e) Wang W.; Xue J.; Tian T.; Zhang J.; Wei L.; Shao J.; Xie Z.; Li Y. Org. Lett. 2013, 15, 2402. |
| [8] | (f) Maruo S.; Nishio K.; Sasamori T.; Tokitoh N.; Kuramochi K.; Tsubaki K. Org. Lett. 2013, 15, 1556. |
| [9] | (a) Corson B. B.; Heintzelman W. J.; Moe H.; Rousseau C. R. J. Org. Chem. 1962, 27, 1636. |
| [9] | (b) Lin A. J.; Sartorelli A. C. J. Med. Chem. 1976, 19, 1336. |
| [9] | (c) Pluim H.; Wynberg H. J. Org. Chem. 1980, 45, 2498. |
| [9] | (d) Liebeskind L. S.; Baysdon S. L.; South M. S. J. Am. Chem. Soc. 1980, 102, 7397. |
| [9] | (e) Janowski W. K.; Prager R. H. Aust. J. Chem. 1985, 38, 921. |
| [9] | (f) Coppa F.; Fontana F.; Minisci F.; Barbosa M. C. N; Vismara E. Tetrahedron 1991, 47, 7343. |
| [9] | (g) Hutchinson E. J.; Kerr W. J.; Magennis E. J. Chem. Commun. 2002, 2262. |
| [10] | (a) Fieser L. F. J. Am. Chem. Soc. 1948, 70, 3165. |
| [10] | (b) Itahara T. J. Org. Chem. 1985, 50, 5546. |
| [10] | (c) Tamayo N.; Echavarren A. M.; Carmen Pardes M. J. Org. Chem. 1991, 56, 6488. |
| [10] | (d) Singh P. K.; Rohtagi B. K.; Khanna R. N. Synth. Commun. 1992, 22, 987. |
| [10] | (e) Papoutsis I.; Spyroudis S.; Varvoglis A. Tetrahedron Lett. 1996, 37, 913. |
| [10] | (f) Echavarren A. M.; de Frutos O.; Tamayo N.; Noheda P.; Calle P. J. Org. Chem. 1997, 62, 4524. |
| [10] | (g) Papoutsis I.; Spyroudis S.; Varvoglis A.; Raptopoulou C. A. Tetrahedron 1997, 53, 6097. |
| [11] | (a) Kazantzi G.; Malamidou-Xenikaki E.; Spyroudis S. Synlett 2006, 16, 2597. |
| [11] | (b) Glinis E.; Malamidou-Xenikaki E.; Skouros H.; Spyroudis S.; Tsanakopoulou M. Tetrahedron 2010, 66, 5786. |
| [11] | (c) Seiple I. B.; Su S.; Rodriguez R. A.; Gianatassio R.; Fujiwara Y.; Sobel A. L.; Baran P. S. J. Am. Chem. Soc. 2010, 132, 13194. |
| [11] | (d) Lockner J. W.; Dixon D. D.; Risgaard R.; Baran P. S. Org. Lett. 2011, 13, 5628. |
| [11] | (e) Fujiwara Y.; Domingo V.; Seiple I. B.; Gianatassio R.; Bel M. D.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 3292. |
| [11] | (f) Uchiyama N.; Shirakawa E.; Nishikawa R.; Hayashi T. Chem. Commun. 2011, 47, 11671. |
| [11] | (g) Wang J.; Wang S.; Wang G.; Zhang J.; Yu X.-Y. Chem. Commun. 2012, 48, 11769. |
| [11] | (h) Komeyama K.; Kashihara T.; Takaki K. Tetrahedron Lett. 2013, 54, 1084. |
| [12] | Patil P.; Nimonkar A.; Akamanchi K. G. J. Org. Chem. 2014, 79, 2331. |
| [13] | Bhuyan M.; Baishy G. Org. Biomol. Chem. 2022, 20, 9172. |
| [14] | Schotten C.; Leprevost S. K.; Yong L. M.; Hughes C. E. Harris K. D. M.; Browne D. L. Org. Process Res. Dev. 2020, 24, 2336. |
| [15] | (a) Saeki T.; Matsunaga T.; Son E.-C.; Tamao K. Adv. Synth. Catal. 2004, 346, 1689. |
| [15] | (b) Liu C.; Miao T.; Zhang L.; Li P.; Zhang Y.; Wang L. Chem.- Asian. J. 2014, 9, 2584. |
| [15] | (c) Zhang Y.; Li Y.; Zhang X.; Jiang X. Chem. Commun. 2015, 51, 941. |
| [15] | (d) Cao D.; Zhang Y.; Liu C.; Wang B.; Sun Y.; Abdukadera A.; Hu H.; Liu Q. Org. Lett. 2016, 18, 2000. |
| [15] | (e) Zhang Y.; Hu H.; Liu C. J.; Cao D.; Wang B.; Sun Y.; Abdukader A. Asian J. Org. Chem. 2016, 6, 102. |
| [15] | (f) Mao S.; Chen Z.; Wang L.; Khadka D. B.; Xin M.; Li P.; Zhang S.-Q. J. Org. Chem. 2018, 84, 463. |
| [15] | (g) Liu C.; Wang Z.; Wang L.; Li P.; Zhang Y. Org. Biomol. Chem. 2019, 17, 9209. |
| [15] | (h) Sutar S. M.; Savanur H. M.; Malunavar S. S.; Prabhala P.; Kalkhambkar R. G.; Laali K. K. Eur. J. Org. Chem. 2019, 2019, 6088. |
| [15] | (i) Liu Y.; Ma X.; Wu G.; Liu Z.; Yang X.; Wang B.; Liu C.; Zhang Y.; Huang Y. New J. Chem. 2019, 43, 9255. |
| [15] | (j) Tang C.; Zhang Y.; Zhou X.; Wang B.; Jin W.; Xia Y.; Liu C. Synthesis 2022, 54, 5110. |
| [15] | (k) Wang B.; Feng Y.; Zhang Y.; Wang S.; Zhou X.; Chen Z.; Xia Y.; Jin W.; Iqbal A.; Liu C.; Zhang Y. Eur. J. Org. Chem. 2023, 26, e202300044. |
| [15] | (l) Gao J.; Song Q.; Zhang L.; Shao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Liu C.; Zhang Y. J. Org. Chem. 2023, 88, 11056. |
| [15] | (m) Zhang L.; Gao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Zhang Y.; Liu C. Org. Chem. Front. 2023, 10, 6063. |
| [15] | (n) Wang B.; Shao Y.; Chen Z.; Xia Y.; Xue F.; Jin W.; Wu S.; Zhang Y.; Liu C. Org. Lett. 2024, 26, 4329. |
| [16] | (a) Zhang Y.; Cao D.; Ma X.; Tang C.; Wang B.; Jin W.; Xia Y.; Liu C. ChemistrySelect 2021, 6, 5701. |
| [16] | (b) Wang B.; Cao D.; Ma X.; Feng Y.; Zhang L.; Zhang Y.; Liu C. Arabian J. Chem. 2021, 14, 103158. |
| [17] | (a) Zhang T.; Wang Y.; Wang B.; Jin W.; Xia Y.; Liu C.; Zhang Y. Adv. Synth. Catal. 2022, 364, 1962. |
| [17] | (b) Zhang T.; Ren X.; Wang B.; Jin W.; Xia Y.; Wu S.; Liu C.; Zhang Y. Org. Chem. Front. 2024, 11, 1050. |
| [18] | For selected reviews see: (a) Lazny R.; Poplawski J.; K?bberling J.; Enders D.; Br?se S. Synlett 1999, 8, 1304. |
| [18] | (b) Br?se S. Acc. Chem. Res. 2004, 37, 805. |
| [18] | (c) K?lmel D. K.; Jung N.; Br?se S. Aust. J. Chem. 2014, 67, 328. |
| [18] | (d) Zhang Y.; Cao D.; Liu W.; Hu H.; Zhang X.; Liu C. Curr. Org. Chem. 2015, 19, 151. |
| [18] | (e) Zhang Y.; Tang C.; Liu Y.; Liu C. Chin. J. Org. Chem. 2021, 41, 2587 (in Chinese). |
| [18] | (张永红, 唐承宗, 刘永红, 刘晨江, 有机化学, 2021, 41, 2587.) |
| [18] | (f) Liu T.; Wu H.; Zhang Q.; Wang C. Org. Biomol. Chem. 2023, 21, 2059. |
| [19] | Koziakov D.; Wu G.; Jacobi von Wangelin A. Org. Biomol. Chem. 2018, 16, 4942. |
/
| 〈 |
|
〉 |