研究论文

光促进1,4-萘醌的一锅三组分胺基芳基化反应研究

  • 王斌 ,
  • 韩万仓 ,
  • 张永红 ,
  • 夏昱 ,
  • 金伟伟 ,
  • 陈子仁 ,
  • 武少峰 ,
  • 刘晨江
展开
  • a 新疆大学分析测试中心 乌鲁木齐 830017
    b 新疆大学化学学院 碳基能源化学与利用国家重点实验室 石油天然气精细化工教育部暨自治区重点实验室 乌鲁木齐绿色催化与合成技术重点实验室 乌鲁木齐 830017

收稿日期: 2024-05-04

  修回日期: 2024-06-07

  网络出版日期: 2024-07-10

基金资助

国家自然科学基金(21762041); 国家自然科学基金(21861036); 国家自然科学基金(21961037); 新疆维吾尔自治区自然科学基金(2023B02008-3); 新疆维吾尔自治区自然科学基金(2022E01042); 新疆维吾尔自治区自然科学基金(2022TSYCCX0024); 新疆维吾尔自治区自然科学基金(2021D01E10)

Study on the Light Promoted One-Pot Three Component Aminoarylation Reaction of 1,4-Naphthoquinone

  • Bin Wang ,
  • Wancang Han ,
  • Yonghong Zhang ,
  • Yu Xia ,
  • Weiwei Jin ,
  • Ziren Chen ,
  • Shaofeng Wu ,
  • Chenjiang Liu
Expand
  • a Analysis and Testing Center, Xinjiang University, Urumqi 830017
    b Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017
*Corresponding authors. E-mail:;

Received date: 2024-05-04

  Revised date: 2024-06-07

  Online published: 2024-07-10

Supported by

National Natural Science Foundation of China(21762041); National Natural Science Foundation of China(21861036); National Natural Science Foundation of China(21961037); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023B02008-3); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022E01042); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022TSYCCX0024); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2021D01E10)

摘要

1,4-萘醌作为核心骨架存在于许多生物活性分子中, 在医药、生物、化妆品和其他合成材料中有着非常广泛的应用. 以1,4-萘醌、胺和芳基三氮烯为原料, 发展了一种光化学合成胺基芳基双功能化1,4-萘醌化合物的方法. 该方法简单易操作, 无需任何金属、额外的氧化剂及其他添加剂, 只需利用紫光照射溶解在甲醇溶剂中的起始原料, 就可以高效地合成胺基芳基化的1,4-萘醌衍生物, 克级规模反应的顺利进行进一步证明了该方法的实用性.

本文引用格式

王斌 , 韩万仓 , 张永红 , 夏昱 , 金伟伟 , 陈子仁 , 武少峰 , 刘晨江 . 光促进1,4-萘醌的一锅三组分胺基芳基化反应研究[J]. 有机化学, 2024 , 44(11) : 3375 -3385 . DOI: 10.6023/cjoc202405001

Abstract

1,4-Naphthoquinone, as a core skeleton exists in many bioactive molecules and has a wide range of applications in medicine, biology, cosmetics, and other synthetic materials. A photochemically synthetic method for aminoaryl bifunctionalized 1,4-naphthoquinone compounds by using 1,4-naphthoquinone, amine, and aryl triazene as raw materials is developed. This method features the advantages of simple and easy to operate without the need for any metals, extra oxidants, or other additives. It only requires methanol as the solvent and purple LED irradiation to efficiently synthesize aminoarylated 1,4- naphthoquinone derivatives. The smooth progress of gram scale reactions further proves the practicality of this method.

参考文献

[1]
(a) Sunassee S. N.; Davies-Coleman M. T. Nat. Prod. Rep. 2012, 29, 513.
[1]
(b) Josey B. J.; Inks E. S.; Wen X.; Chou C. J. J. Med. Chem. 2013, 56, 1007.
[1]
(c) Xu K.; Wang P.; Wang L.; Liu C.; Xu S.; Cheng Y.; Wang Y.; Li Q.; Lei H. Chem. Biodiversity 2014, 11, 341.
[2]
(a) Ayla S. S.; Bahar H.; Yavuz S.; Hazer B.; Ibis C. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 438.
[2]
(b) Ravichandiran P.; Boguszewska-Czubara A.; Mas?yk M.; Bella A. P.; Subramaniyan S. A.; Johnson P. M.; Shim K. S.; Kim H. G.; Yoo D. J. ACS Sustainable Chem. Eng. 2019, 7, 17210.
[3]
(a) Aguilar-Martínez M.; Cuevas G.; Jiménez-Estrada M.; González I.; Lotina-Hennsen B; Macías-Ruvalcaba N. J. Org. Chem. 1999, 64, 3684.
[3]
(b) Neves A. P.; Barbosa C. C.; Greco S. J.; Vargas M. D.; Visentin L. C.; Pinheiro C. B.; Mangrich A. S.; Barbosa J. P.; da Costa G. L. J. Braz. Chem. Soc. 2009, 20, 712.
[3]
(c) Francisco A. I.; Casellato A.; Neves A. P.; Carneiro J. W. D. M.; Vargas M. D.; Visentin L. D. C.; Magalh?es A.; Camara C. A.; Pessoa C.; Costa-Lotufo L. V.; Marinho-Filho J. D. B.; De Moraes M. O. J. Braz. Chem. Soc. 2010, 21, 169.
[4]
(a) Fukuyama T.; Yang L. J. Am. Chem. Soc. 1989, 111, 8303.
[4]
(b) Andrus M. B.; Meredith E. L.; Simmons B. L.; Sekhar B. B. V. S.; Hicken E. J. Org. Lett. 2002, 4, 3549.
[4]
(c) Hoyt M. T.; Palchaudhuri R.; Hergenrother P. J. Invest. New Drugs 2011, 29, 562.
[4]
(d) Rasapalli S.; Jarugumilli G.; Yarrapothu G. R.; Golen J. A.; Rheingold A. L. Org. Lett. 2013, 15, 1736.
[4]
(e) Li S.; Wang H.; Li Y.; Deng J.; Lu C.; Shen Y.; Shen Y. ChemBioChem 2014, 15, 94.
[4]
(f) Nawrat C. C.; Kitson R. R. A.; Moody C. J. Org. Lett. 2014, 16, 1896.
[5]
(a) Huang H.-M.; Li Y.-J.; Dai Y.-P.; Yu W.-B.; Ye Q.; Gao J.-R. J. Chem. Res. 2013, 37, 34.
[5]
(b) Li X.; Himes R. A.; Prosser L. C.; Christie C. F.; Watt E.; Edwards S. F.; Metcalf C. S.; West P. J.; Wilcox K. S.; Chan S. S. L.; Chou C. J. J. Med. Chem. 2020, 63, 5865.
[6]
(a) Mathew N.; Karunan T.; Srinivasan L.; Muthuswamy K. Drug Dev. Res. 2009, 71, 188.
[6]
(b) Jali B. R.; Masud K.; Baruah J. B. Polyhedron 2013, 51, 75.
[6]
(c) You H.; Vegi S. R.; Lagishetti C.; Chen S.; Reddy R. S.; Yang X.; Guo J.; Wang C.; He Y. J. Org. Chem. 2018, 83, 4119.
[6]
(d) Batabyal M.; Kumar S. J. Org. Chem. 2023, 88, 7401.
[7]
(a) Francisco A. I.; Vargas M. D.; Carneiro J. W. Lanznaster M.; Torres J. C.; Camara C. A.; Pinto A. C. J. Mol. Struct. 2008, 891, 228.
[7]
(b) Lisboa C. da. S.; Santos V. G.; Vaz B. G.; de Lucas N. C.; Eberlin M. N.; Garden S. J. J. Org. Chem. 2011, 76, 5264.
[7]
(c) Janeczko M.; Demchuk O. M.; Strzelecka D.; Kubins?ki K.; Mas?yk M. Eur. J. Med. Chem. 2016, 124, 1019.
[7]
(d) Zeng F.-L.; Chen X.-L.; He S.-Q.; Sun K.; Liu Y.; Fu R.; Qu L.-B.; Zhao Y.-F.; Yu B. Org. Chem. Front. 2019, 6, 1476.
[8]
(a) Yin J.; Liebeskind L. S. J. Org. Chem. 1998, 63, 5726.
[8]
(b) Narayan S.; Roush W. R. Org. Lett. 2004, 6, 3789.
[8]
(c) Lumb J.-P.; Trauner D. Org. Lett. 2005, 7, 5865.
[8]
(d) Kuttruff C. A.; Geiger S.; Cakmak M.; Mayer P.; Trauner D. Org. Lett. 2012, 14, 1070.
[8]
(e) Wang W.; Xue J.; Tian T.; Zhang J.; Wei L.; Shao J.; Xie Z.; Li Y. Org. Lett. 2013, 15, 2402.
[8]
(f) Maruo S.; Nishio K.; Sasamori T.; Tokitoh N.; Kuramochi K.; Tsubaki K. Org. Lett. 2013, 15, 1556.
[9]
(a) Corson B. B.; Heintzelman W. J.; Moe H.; Rousseau C. R. J. Org. Chem. 1962, 27, 1636.
[9]
(b) Lin A. J.; Sartorelli A. C. J. Med. Chem. 1976, 19, 1336.
[9]
(c) Pluim H.; Wynberg H. J. Org. Chem. 1980, 45, 2498.
[9]
(d) Liebeskind L. S.; Baysdon S. L.; South M. S. J. Am. Chem. Soc. 1980, 102, 7397.
[9]
(e) Janowski W. K.; Prager R. H. Aust. J. Chem. 1985, 38, 921.
[9]
(f) Coppa F.; Fontana F.; Minisci F.; Barbosa M. C. N; Vismara E. Tetrahedron 1991, 47, 7343.
[9]
(g) Hutchinson E. J.; Kerr W. J.; Magennis E. J. Chem. Commun. 2002, 2262.
[10]
(a) Fieser L. F. J. Am. Chem. Soc. 1948, 70, 3165.
[10]
(b) Itahara T. J. Org. Chem. 1985, 50, 5546.
[10]
(c) Tamayo N.; Echavarren A. M.; Carmen Pardes M. J. Org. Chem. 1991, 56, 6488.
[10]
(d) Singh P. K.; Rohtagi B. K.; Khanna R. N. Synth. Commun. 1992, 22, 987.
[10]
(e) Papoutsis I.; Spyroudis S.; Varvoglis A. Tetrahedron Lett. 1996, 37, 913.
[10]
(f) Echavarren A. M.; de Frutos O.; Tamayo N.; Noheda P.; Calle P. J. Org. Chem. 1997, 62, 4524.
[10]
(g) Papoutsis I.; Spyroudis S.; Varvoglis A.; Raptopoulou C. A. Tetrahedron 1997, 53, 6097.
[11]
(a) Kazantzi G.; Malamidou-Xenikaki E.; Spyroudis S. Synlett 2006, 16, 2597.
[11]
(b) Glinis E.; Malamidou-Xenikaki E.; Skouros H.; Spyroudis S.; Tsanakopoulou M. Tetrahedron 2010, 66, 5786.
[11]
(c) Seiple I. B.; Su S.; Rodriguez R. A.; Gianatassio R.; Fujiwara Y.; Sobel A. L.; Baran P. S. J. Am. Chem. Soc. 2010, 132, 13194.
[11]
(d) Lockner J. W.; Dixon D. D.; Risgaard R.; Baran P. S. Org. Lett. 2011, 13, 5628.
[11]
(e) Fujiwara Y.; Domingo V.; Seiple I. B.; Gianatassio R.; Bel M. D.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 3292.
[11]
(f) Uchiyama N.; Shirakawa E.; Nishikawa R.; Hayashi T. Chem. Commun. 2011, 47, 11671.
[11]
(g) Wang J.; Wang S.; Wang G.; Zhang J.; Yu X.-Y. Chem. Commun. 2012, 48, 11769.
[11]
(h) Komeyama K.; Kashihara T.; Takaki K. Tetrahedron Lett. 2013, 54, 1084.
[12]
Patil P.; Nimonkar A.; Akamanchi K. G. J. Org. Chem. 2014, 79, 2331.
[13]
Bhuyan M.; Baishy G. Org. Biomol. Chem. 2022, 20, 9172.
[14]
Schotten C.; Leprevost S. K.; Yong L. M.; Hughes C. E. Harris K. D. M.; Browne D. L. Org. Process Res. Dev. 2020, 24, 2336.
[15]
(a) Saeki T.; Matsunaga T.; Son E.-C.; Tamao K. Adv. Synth. Catal. 2004, 346, 1689.
[15]
(b) Liu C.; Miao T.; Zhang L.; Li P.; Zhang Y.; Wang L. Chem.- Asian. J. 2014, 9, 2584.
[15]
(c) Zhang Y.; Li Y.; Zhang X.; Jiang X. Chem. Commun. 2015, 51, 941.
[15]
(d) Cao D.; Zhang Y.; Liu C.; Wang B.; Sun Y.; Abdukadera A.; Hu H.; Liu Q. Org. Lett. 2016, 18, 2000.
[15]
(e) Zhang Y.; Hu H.; Liu C. J.; Cao D.; Wang B.; Sun Y.; Abdukader A. Asian J. Org. Chem. 2016, 6, 102.
[15]
(f) Mao S.; Chen Z.; Wang L.; Khadka D. B.; Xin M.; Li P.; Zhang S.-Q. J. Org. Chem. 2018, 84, 463.
[15]
(g) Liu C.; Wang Z.; Wang L.; Li P.; Zhang Y. Org. Biomol. Chem. 2019, 17, 9209.
[15]
(h) Sutar S. M.; Savanur H. M.; Malunavar S. S.; Prabhala P.; Kalkhambkar R. G.; Laali K. K. Eur. J. Org. Chem. 2019, 2019, 6088.
[15]
(i) Liu Y.; Ma X.; Wu G.; Liu Z.; Yang X.; Wang B.; Liu C.; Zhang Y.; Huang Y. New J. Chem. 2019, 43, 9255.
[15]
(j) Tang C.; Zhang Y.; Zhou X.; Wang B.; Jin W.; Xia Y.; Liu C. Synthesis 2022, 54, 5110.
[15]
(k) Wang B.; Feng Y.; Zhang Y.; Wang S.; Zhou X.; Chen Z.; Xia Y.; Jin W.; Iqbal A.; Liu C.; Zhang Y. Eur. J. Org. Chem. 2023, 26, e202300044.
[15]
(l) Gao J.; Song Q.; Zhang L.; Shao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Liu C.; Zhang Y. J. Org. Chem. 2023, 88, 11056.
[15]
(m) Zhang L.; Gao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Zhang Y.; Liu C. Org. Chem. Front. 2023, 10, 6063.
[15]
(n) Wang B.; Shao Y.; Chen Z.; Xia Y.; Xue F.; Jin W.; Wu S.; Zhang Y.; Liu C. Org. Lett. 2024, 26, 4329.
[16]
(a) Zhang Y.; Cao D.; Ma X.; Tang C.; Wang B.; Jin W.; Xia Y.; Liu C. ChemistrySelect 2021, 6, 5701.
[16]
(b) Wang B.; Cao D.; Ma X.; Feng Y.; Zhang L.; Zhang Y.; Liu C. Arabian J. Chem. 2021, 14, 103158.
[17]
(a) Zhang T.; Wang Y.; Wang B.; Jin W.; Xia Y.; Liu C.; Zhang Y. Adv. Synth. Catal. 2022, 364, 1962.
[17]
(b) Zhang T.; Ren X.; Wang B.; Jin W.; Xia Y.; Wu S.; Liu C.; Zhang Y. Org. Chem. Front. 2024, 11, 1050.
[18]
For selected reviews see: (a) Lazny R.; Poplawski J.; K?bberling J.; Enders D.; Br?se S. Synlett 1999, 8, 1304.
[18]
(b) Br?se S. Acc. Chem. Res. 2004, 37, 805.
[18]
(c) K?lmel D. K.; Jung N.; Br?se S. Aust. J. Chem. 2014, 67, 328.
[18]
(d) Zhang Y.; Cao D.; Liu W.; Hu H.; Zhang X.; Liu C. Curr. Org. Chem. 2015, 19, 151.
[18]
(e) Zhang Y.; Tang C.; Liu Y.; Liu C. Chin. J. Org. Chem. 2021, 41, 2587 (in Chinese).
[18]
(张永红, 唐承宗, 刘永红, 刘晨江, 有机化学, 2021, 41, 2587.)
[18]
(f) Liu T.; Wu H.; Zhang Q.; Wang C. Org. Biomol. Chem. 2023, 21, 2059.
[19]
Koziakov D.; Wu G.; Jacobi von Wangelin A. Org. Biomol. Chem. 2018, 16, 4942.
文章导航

/