研究论文

1,2,3-苯并三嗪-4-酮噁二唑硫醚(砜)甲基衍生物的设计、合成及杀菌和杀线虫活性

  • 赵薇 ,
  • 李凤宇 ,
  • 赵伟 ,
  • 查润 ,
  • 史彩华 ,
  • 徐志红
展开
  • a长江大学农学院 荆州 434025;
    b湖北文理学院现代农业研究院 襄阳 441053

收稿日期: 2024-03-14

  修回日期: 2024-05-11

  网络出版日期: 2024-07-15

基金资助

国家自然科学基金(NO.31672069)、国家自然科学基金(NO.32172400)资助项目.

Design, Synthesis and Fungicidal and Nematocidal Activity of 1,2,3 -benzotriazine-4-one Oxadiazole Thioether (sulfone) Methyl Derivatives

  • Zhao Wei ,
  • Li Fengyu ,
  • Zhao Wei ,
  • Zha Run ,
  • Shi Caihua
Expand
  • aCollege of Agriculture, Yangtze University, Jingzhou 434025;
    bInstitute of Advanced Agricultural Science,Hubei University of Arts and Science, Xiangyang 441053

Received date: 2024-03-14

  Revised date: 2024-05-11

  Online published: 2024-07-15

Supported by

National Natural Foundation of China (NO.31672069) and the National Natural Science Foundation of China (NO.32172400)..

摘要

为了寻找高活性的新化合物, 设计并合成了20个含噁二唑片段的1,2,3-苯并三嗪-4-酮硫醚(砜)类衍生物. 通过1H NMR、13C NMR和高分辨质谱(HRMS)确证了化合物的结构. 离体抑菌活性测定结果显示: 化合物7c对油菜菌核病菌Sclerotinia scleotiorum具有较好抑制效果, 其EC50值为3.84 mg/L, 与对照药剂噁霉灵(5.43 mg/L)相当; 7c (1.81 mg/L)对水稻纹枯病菌Rhizoctonia solani的毒力与对照药剂多菌灵(1.09 mg/L)相当, 显著高于对照药剂噁霉灵(45.70 mg/L). 在100和200 mg/L浓度下, 化合物7c对水稻纹枯病菌保护防效分别为78.51%和84.48%, 治疗防效分别为60.34%和78.91%, 低浓度时的治疗防效与多菌灵(61.53%)相当. 离体杀线虫活性测定结果显示: 浓度为100 mg/L时, 部分化合物对秀丽隐杆线虫和松材线虫有一定的活性, 化合物6a对秀丽隐杆线虫二龄幼虫LC50值为3.96 mg/L, 优于对照药剂噻唑磷(57.39 mg/L), 与氟吡菌酰胺(4.68 mg/L)相当; 化合物6a(50.28 mg/L)对松材线虫的毒力低于噻唑磷(24.68 mg/L)和氟吡菌酰胺(0.57 mg/L). 本研究所合成的目标化合物具有较高杀菌活性与一定的杀线虫活性, 可为新型1,2,3-苯并三嗪-4-酮类衍生物活性研究提供参考.

本文引用格式

赵薇 , 李凤宇 , 赵伟 , 查润 , 史彩华 , 徐志红 . 1,2,3-苯并三嗪-4-酮噁二唑硫醚(砜)甲基衍生物的设计、合成及杀菌和杀线虫活性[J]. 有机化学, 0 : 240713 . DOI: 10.6023/oc202403019

Abstract

In order to find new compounds with high activity, 20 1,2,3-Benzotriazin-4-one thioether (sulfone) derivatives containing oxadiazole fragments were designed and synthesized. The structure of the compounds was confirmed by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). Compound 7c had a good inhibitory effect on Sclerotinia sclerotiorum, with an EC50 value of 3.84 mg/L, which was comparable to that of the control agent hymexazol (5.43 mg/L); 7c (1.81 mg/L) against Rhizoctonia solani was comparable to that of carbendazim (1.09 mg/L), and significantly higher than that of the control agent hymexazol (45.70 mg/L). At the concentrations of 100 and 200 mg/L, the protective and curative effects of compound 7c against Rhizoctonia solani was 78.51% and 84.48%, and the curative effects was 60.34% and 78.91%, respectively, At low concentrations, the curative effects was comparable to that of carbendazim (61.53%). At a concentration of 100 mg/L, some compounds had certain in vitro activities against Caenorhabditis elegans and Bursaphelenchus xylophilus, and the LC50 value of compound 6a against the J2 of C. elegans was 3.96 mg/L, which was better than that of Fosthiazate (57.39 mg/L) and comparable to that of fluopyram (4.68 mg/L). However, the virulence of compound 6a (50.28 mg/L) against B. xylophilus was lower than that of fosthiazate(24.68 mg/L) and fluopyram (0.57 mg/L). The target compounds synthesized in this study have high fungicidal activity and certain nematicidal activity, which can provide a reference for the study of new 1,2,3- benzotriazine-4-one derivatives.

参考文献

[1]Hunt, J. C.; Biggs, E.; Clarke, E. D.; Whitingham,W. G.Bioorg. Med. Chem. Lett. 2007, 17, 5222.
[2]Migawa, T. M.; Townsend, B. L.J. Org. Chem. 2001, 66, 4776.
[3]Migawa, T. M.; Drach, J. C.; Townsend, B. L.J. Med. Chem. 2005, 48, 3840.
[4]Wang, G. L.; Chen, X.; Chang, Y. N.; Du, D.; Li, Z.; Xu, X. Y.Chin. Chem. Lett. 2015, 26, 1502.
[5]Gadekar, S. M.; Ross, E.The Joumalof Organic Chemistry. 1961, 26, 613.
[6]Gadekar, S. M.; Frederick, J. L.The Journal of Organic Chemistry.1962, 27, 1383.
[7]Caliendo, G.; Fiorino, F.; Grieco, P.; Prissutti, E.; Santagada, V.; Meli, R.; Raso, G. M.; Zanesco, A.; Nucci, G. D.Eur. J. Med. Chem. 1999, 34, 1043.
[8]Van Heyningen, E.0[8]Van Heyningen, E.J. Am. Chem. Soc. 1955, 77, 6562.
[9]Wang, G. L.; Chen, X, L.; Deng, Y, Y.; Li, Z.; Xu, X, Y.0[9]Wang, G. L.; Chen, X, L.; Deng, Y, Y.; Li, Z.; Xu, X, Y.J. Agric. Food Chem. 2015, 63, 6883.
[10]Zhang, J.-P.; Li, P.; Wang, Y.-H.; Zhang, C.;Chen, L.-J.; H. M.; X, W.Chem. J. Chin Univ. 2018, 39, 1455 (in Chinese).
(张菊平, 李普, 王一会, 张橙, 陈丽娟, 汤旭, 贺鸣, 薛伟. 高等学校化学学报, 2018, 39, 1455.
[11]Zhang, Y.; Zhu, H, -W; Shang, J. -F.; Wang, B, -L.; Li, Z, -M.Chin. J. Org. Chem, 2019, 39, 86 (in Chinese).
(张燕, 朱洪伟, 尚俊峰, 王宝雷, 李正名. 有机化学, 2019, 39, 86.
[12]Chen, D. C.; Yang, H. P.; Li, Z.; Maienfischa, P ; Xu, X. Y.J. Mol. Struct. 2022, 1264.
[13]Duan, Z, -F.; Shao, -L. Chin. J. Org. Chem, 2015, 35, 2004.
(段志芳, 邵玲. 有机化学, 2015, 35, 2004.
[14]Song, B. A.CN 106432125A, 2017.
[15]Chen, J. X.; Gan, X. H.; Yi, C. F.; Wang, S. B.; Yang, Y. Y.; He, F.C.;Hu, D.Y.;Song, B. A.Chin. J. Chem, 2018, 36, 939.
[16]Gupta, R.; Sirohi, R.; Kishore, D. Chem.Incl. Med. Chem. 2006, 45, 2147.
[17]Van Heyningen, E.J. Am. Chem. Soc. 1955, 77, 6562.
[18]Chen, X.-W. M.S. Thesis, Guizhou University, Guiyang, 2016 (in Chinese).
(陈学文, 硕士论文, 贵州大学, 贵阳, 2016.)
[19]Chen, X.-W.; Gan, X.-H.; Chen, J.-X.; Chen, Y.-Z.; Wang, Y.-J.; Hu, D.-Y.; Song, B.-A.Chin. J. Org. Chem. 2017, 37, 2343 (in Chinese).
(陈学文, 甘秀海, 陈吉祥, 陈永中, 王艳娇, 胡德禹, 宋宝安, 有机化学, 2017, 37, 2343.)
[20]Chen, J. X.; L,Y, Q .Pest Manag. Sci, 2020, 76, 3188.
[21]Shi, J.-C. M.S. Thesis, Yangtze University, Jingzhou, 2023 (in Chinese).
(时锦超, 硕士论文, 长江大学, 荆州, 2023.)
[22]Kang, Z.; Gu, B.-G. Standard Operating Procedures for Bioactivity Testing of Pesticides - Fungicide Roll.0[22]Kang, Z.; Gu, B.-G. Standard Operating Procedures for Bioactivity Testing of Pesticides - Fungicide Roll. Shenyang, 2016, pp. 155~156 (in Chinese).
(康卓, 顾宝根, 农药生物活性测试标准操作规范——杀菌剂卷, 沈阳, 2016, pp. 155~156.)
[23]Zhou, P.; Huang, J.-J.; He, C.-W.; Guo, Q.-N.; You, J.; Liu, Y.-F.; Xu, Z.-H.J. Pestic. Sci. Chin. 2022, 24, 1367 (in Chinese).
(周蒲, 黄俊杰, 何昌文, 郭倩男, 游江, 刘一凡, 徐志红, 农药学学报, 2022, 24, 1367.)
文章导航

/