四羟基二硼和硫酸铜共同促进的苯酞类化合物的简便合成
收稿日期: 2024-05-09
修回日期: 2024-05-31
网络出版日期: 2024-07-15
基金资助
国家自然科学基金(22271214)
Tetrahydroxydiboron and Copper Sulfate Co-Promoted Facile Synthesis of Phthalides
Received date: 2024-05-09
Revised date: 2024-05-31
Online published: 2024-07-15
Supported by
National Natural Science Foundation of China(22271214)
范飞飞 , 陈龙徽 , 王光伟 . 四羟基二硼和硫酸铜共同促进的苯酞类化合物的简便合成[J]. 有机化学, 2024 , 44(11) : 3467 -3475 . DOI: 10.6023/cjoc202405009
Transition-metal catalyzed cross-coupling is one of the basic strategies for the C—C bond formation. However, it is difficult to achieve satisfactory results when terminal alkynes with electron-withdrawing group such as propiolate esters are used. The reason behind this might be the easy polymerization of this type of alkynes in the presence of base. A tetrahydroxydiboron and copper sulfate co-promoted cross-coupling/cyclization of propiolate esters and o-iodobenzoic acid for the facile and efficient construction of phthalides is described. Preliminary mechanism study indicates that tetrahydroxydiboron can inhibit the polymerization of propiolate esters and increase the reaction rate. This method is characterized by high regio- and stereoselectivities, mild reaction conditions, short reaction time, broad substrate scope, and excellent functional group compatibility.
| [1] | Beck J. J.; Chou S.-C. J. Nat. Prod. 2007, 70, 891. |
| [2] | Lin G.; Chan S. S.-K.; Chung H.-S.; Li S.-L. Stud. Nat. Prod. Chem. 2005, 32, 611. |
| [3] | Karmakar R.; Pahari P.; Mal D. Chem. Rev. 2014, 114, 6213. |
| [4] | Mitsuhashi H.; Muramatsu T.; Nagai U.; Nakano T.; Ueno K. Chem. Pharm. Bull. 1963, 11, 1317. |
| [5] | Chen X.-Q.; Qiu K.; Liu H.; He Q.; Bai J.-H.; Lu W. Chin. Med. J. 2019, 132, 1467. |
| [6] | Jadulco R.; Brauers G.; Edrada A.; Ebel R.; Wray V.; Sudarsono |
| [7] | Fujiwara A.; Mori T.; Lida A.; Ueda S.; Hano Y.; Nomura T.; Tokuda H.; Nishino H. J. Nat. Prod. 1998, 61, 629. |
| [8] | Larock R. C. Heterocycles 1982, 18, 397. |
| [9] | Snieckus V. Heterocycles 1980, 14, 1649. |
| [10] | Petrignet J.; Thibonnet J.; Commeiras L.; Gueyrard D. Eur. J.Org. Chem. 2022, 2022, e202200344. |
| [11] | Kumar M. R.; Irudayanathan F. M.; Moon J. H.; Lee S. Adv. Synth. Catal. 2013, 355, 3221. |
| [12] | Dhara S.; Singha R.; Ghosh M.; Ahmed A.; Nuree Y.; Das A.; Ray J. K. RSC Adv. 2014, 4, 42604. |
| [13] | Awasthi A.; Singh M.; Rathee G.; Chandra R. RSC Adv. 2020, 10, 12626. |
| [14] | Chinchilla R.; Nájera C. Chem. Rev. 2003, 103, 1979. |
| [15] | Castro C. E.; Stephens R. D. J. Org. Chem. 1963, 28, 3313. |
| [16] | Chodkiewicz W.; Cadiot P. C. R. Hebd. Seances Acad. Sci. 1955, 241, 1055. |
| [17] | Negishi E.; Anastasia L. Chem. Rev. 2007, 107, 874. |
| [18] | Inack-Ngi S.; Rahmani R.; Commeiras L.; Chouraqui G.; Thibonnet J.; Duchêne A.; Abarbri M.; Parrain J. Adv. Synth. Catal. 2009, 351, 779. |
| [19] | Barros J. C.; Souza A. L. F.; Da Silva J. F. M.; Antunes O. A. C. Catal. Lett. 2011, 141, 549. |
| [20] | Nakane T.; Tanioka Y.; Tsukada N. Organometallics 2015, 34, 1191. |
| [21] | He J.; Yang K.; Zhao J.; Cao S. Org. Lett. 2019, 21, 9714. |
| [22] | Anastasia L.; Negishi E. Org. Lett. 2001, 3, 3111. |
| [23] | Kundu N. G.; Pal M. J. Chem. Soc., Chem. Commun. 1993, 86. |
| [24] | Zhou L.; Jiang H.-F. Tetrahedron Lett. 2007, 48, 8449. |
| [25] | Castro C. E.; Gaughan E. J.; Owsley D. C. J. Org. Chem. 1966, 31, 4071. |
| [26] | Wang P.; Li Y.; Wang G. Synthesis 2021, 53, 3555. |
| [27] | Yang K.; Wang P.; Sun Z.-Y.; Guo M.; Zhao W.; Tang X.; Wang G. Org. Lett. 2021, 23, 3933. |
| [28] | Lei W.; Yang Y.; Guo M.; Zhao W.; Wang G. Synthesis 2023, 55, 2702. |
| [29] | Sun Q.; Sun Z.; Yu Z.; Wang G. Chin. J. Org. Chem. 2022, 42, 2515 (in Chinese). |
| [29] | (孙奇, 孙泽颖, 俞泽, 王光伟, 有机化学, 2022, 42, 2515.) |
| [30] | Sun Z.-Y.; Zhou S.; Yang K.; Guo M.; Zhao W.; Tang X.; Wang G. Org. Lett. 2020, 22, 6214. |
| [31] | Yang Z.; Chen L.; Sun Q.; Guo M.; Wang G.; Zhao W.; Tang X. J. Org. Chem. 2022, 87, 3788. |
| [32] | Gray D. L. In Name Reactions for Homologations-Part I, Eds.: Li, J. J.; Corey, E. J., Wiley & Sons, Hoboken, NJ, 2009, pp. 212-235. |
| [33] | Haglund O.; Nilsson M. Synlett 1991, 723. |
| [34] | Niebel C.; Lokshin V. Eur. J. Org. Chem. 2008, 2008, 3689. |
| [35] | Kimihiko H.; Naotake T. Bull. Chem. Soc. Jpn. 1988, 61, 1791. |
| [36] | Guo Z.; Zhou P.; Song H.; Liu Y.; Zhang J.; Li Y.; Wang Q. J. Agric. Food Chem. 2021, 69, 15123. |
| [37] | Curti F.; Tiecco M.; Pirovano V.; Germani R.; Caselli A.; Rossi E.; Abbiati G. Eur. J. Org. Chem. 2019, 2019, 1904. |
| [38] | He J.; Zhang J.; Li X.; Shi H.; Du Y. Chem. Commun. 2022, 58, 9096. |
| [39] | Chuc L. T. N.; Nguyen T. A. H.; Hou D.-R. Org. Biomol. Chem. 2020, 18, 2758 |
| [40] | Zhang X.; Wan X.; Cong Y.; Zhen X.; Li Q.; Zhang-Negrerie D.; Du Y.; Zhao K. J. Org. Chem. 2019, 84, 10402. |
/
| 〈 |
|
〉 |