研究论文

四羟基二硼和硫酸铜共同促进的苯酞类化合物的简便合成

  • 范飞飞 ,
  • 陈龙徽 ,
  • 王光伟
展开
  • 天津大学理学院 化学系 天津 300072

收稿日期: 2024-05-09

  修回日期: 2024-05-31

  网络出版日期: 2024-07-15

基金资助

国家自然科学基金(22271214)

Tetrahydroxydiboron and Copper Sulfate Co-Promoted Facile Synthesis of Phthalides

  • Feifei Fan ,
  • Longhui Chen ,
  • Guangwei Wang
Expand
  • Department of Chemistry, School of Science, Tianjin University, Tianjin 300072
*Corresponding author. E-mail:

Received date: 2024-05-09

  Revised date: 2024-05-31

  Online published: 2024-07-15

Supported by

National Natural Science Foundation of China(22271214)

摘要

过渡金属催化的交叉偶联反应是构建碳碳键的基本策略之一, 但是含有吸电子基的末端炔烃如丙炔酸酯及其衍生物, 在偶联反应中常常无法获得满意的结果, 其原因是这类化合物在碱性条件下容易形成聚合物. 发展了四羟基二硼和硫酸铜共同促进的丙炔酸酯类化合物和邻碘苯甲酸的快速偶联环化反应, 用来高效构建苯酞类化合物. 初步机理研究表明, 四羟基二硼可以抑制丙炔酸酯聚合物的形成, 并能提高偶联环化的反应速度. 该方法具有区域和立体选择性高、反应条件温和、反应时间短、底物适用范围广等特点.

本文引用格式

范飞飞 , 陈龙徽 , 王光伟 . 四羟基二硼和硫酸铜共同促进的苯酞类化合物的简便合成[J]. 有机化学, 2024 , 44(11) : 3467 -3475 . DOI: 10.6023/cjoc202405009

Abstract

Transition-metal catalyzed cross-coupling is one of the basic strategies for the C—C bond formation. However, it is difficult to achieve satisfactory results when terminal alkynes with electron-withdrawing group such as propiolate esters are used. The reason behind this might be the easy polymerization of this type of alkynes in the presence of base. A tetrahydroxydiboron and copper sulfate co-promoted cross-coupling/cyclization of propiolate esters and o-iodobenzoic acid for the facile and efficient construction of phthalides is described. Preliminary mechanism study indicates that tetrahydroxydiboron can inhibit the polymerization of propiolate esters and increase the reaction rate. This method is characterized by high regio- and stereoselectivities, mild reaction conditions, short reaction time, broad substrate scope, and excellent functional group compatibility.

参考文献

[1]
Beck J. J.; Chou S.-C. J. Nat. Prod. 2007, 70, 891.
[2]
Lin G.; Chan S. S.-K.; Chung H.-S.; Li S.-L. Stud. Nat. Prod. Chem. 2005, 32, 611.
[3]
Karmakar R.; Pahari P.; Mal D. Chem. Rev. 2014, 114, 6213.
[4]
Mitsuhashi H.; Muramatsu T.; Nagai U.; Nakano T.; Ueno K. Chem. Pharm. Bull. 1963, 11, 1317.
[5]
Chen X.-Q.; Qiu K.; Liu H.; He Q.; Bai J.-H.; Lu W. Chin. Med. J. 2019, 132, 1467.
[6]
Jadulco R.; Brauers G.; Edrada A.; Ebel R.; Wray V.; Sudarsono; Proksch P. J. Nat. Prod. 2002, 65, 730.
[7]
Fujiwara A.; Mori T.; Lida A.; Ueda S.; Hano Y.; Nomura T.; Tokuda H.; Nishino H. J. Nat. Prod. 1998, 61, 629.
[8]
Larock R. C. Heterocycles 1982, 18, 397.
[9]
Snieckus V. Heterocycles 1980, 14, 1649.
[10]
Petrignet J.; Thibonnet J.; Commeiras L.; Gueyrard D. Eur. J.Org. Chem. 2022, 2022, e202200344.
[11]
Kumar M. R.; Irudayanathan F. M.; Moon J. H.; Lee S. Adv. Synth. Catal. 2013, 355, 3221.
[12]
Dhara S.; Singha R.; Ghosh M.; Ahmed A.; Nuree Y.; Das A.; Ray J. K. RSC Adv. 2014, 4, 42604.
[13]
Awasthi A.; Singh M.; Rathee G.; Chandra R. RSC Adv. 2020, 10, 12626.
[14]
Chinchilla R.; Nájera C. Chem. Rev. 2003, 103, 1979.
[15]
Castro C. E.; Stephens R. D. J. Org. Chem. 1963, 28, 3313.
[16]
Chodkiewicz W.; Cadiot P. C. R. Hebd. Seances Acad. Sci. 1955, 241, 1055.
[17]
Negishi E.; Anastasia L. Chem. Rev. 2007, 107, 874.
[18]
Inack-Ngi S.; Rahmani R.; Commeiras L.; Chouraqui G.; Thibonnet J.; Duchêne A.; Abarbri M.; Parrain J. Adv. Synth. Catal. 2009, 351, 779.
[19]
Barros J. C.; Souza A. L. F.; Da Silva J. F. M.; Antunes O. A. C. Catal. Lett. 2011, 141, 549.
[20]
Nakane T.; Tanioka Y.; Tsukada N. Organometallics 2015, 34, 1191.
[21]
He J.; Yang K.; Zhao J.; Cao S. Org. Lett. 2019, 21, 9714.
[22]
Anastasia L.; Negishi E. Org. Lett. 2001, 3, 3111.
[23]
Kundu N. G.; Pal M. J. Chem. Soc., Chem. Commun. 1993, 86.
[24]
Zhou L.; Jiang H.-F. Tetrahedron Lett. 2007, 48, 8449.
[25]
Castro C. E.; Gaughan E. J.; Owsley D. C. J. Org. Chem. 1966, 31, 4071.
[26]
Wang P.; Li Y.; Wang G. Synthesis 2021, 53, 3555.
[27]
Yang K.; Wang P.; Sun Z.-Y.; Guo M.; Zhao W.; Tang X.; Wang G. Org. Lett. 2021, 23, 3933.
[28]
Lei W.; Yang Y.; Guo M.; Zhao W.; Wang G. Synthesis 2023, 55, 2702.
[29]
Sun Q.; Sun Z.; Yu Z.; Wang G. Chin. J. Org. Chem. 2022, 42, 2515 (in Chinese).
[29]
(孙奇, 孙泽颖, 俞泽, 王光伟, 有机化学, 2022, 42, 2515.)
[30]
Sun Z.-Y.; Zhou S.; Yang K.; Guo M.; Zhao W.; Tang X.; Wang G. Org. Lett. 2020, 22, 6214.
[31]
Yang Z.; Chen L.; Sun Q.; Guo M.; Wang G.; Zhao W.; Tang X. J. Org. Chem. 2022, 87, 3788.
[32]
Gray D. L. In Name Reactions for Homologations-Part I, Eds.: Li, J. J.; Corey, E. J., Wiley & Sons, Hoboken, NJ, 2009, pp. 212-235.
[33]
Haglund O.; Nilsson M. Synlett 1991, 723.
[34]
Niebel C.; Lokshin V. Eur. J. Org. Chem. 2008, 2008, 3689.
[35]
Kimihiko H.; Naotake T. Bull. Chem. Soc. Jpn. 1988, 61, 1791.
[36]
Guo Z.; Zhou P.; Song H.; Liu Y.; Zhang J.; Li Y.; Wang Q. J. Agric. Food Chem. 2021, 69, 15123.
[37]
Curti F.; Tiecco M.; Pirovano V.; Germani R.; Caselli A.; Rossi E.; Abbiati G. Eur. J. Org. Chem. 2019, 2019, 1904.
[38]
He J.; Zhang J.; Li X.; Shi H.; Du Y. Chem. Commun. 2022, 58, 9096.
[39]
Chuc L. T. N.; Nguyen T. A. H.; Hou D.-R. Org. Biomol. Chem. 2020, 18, 2758
[40]
Zhang X.; Wan X.; Cong Y.; Zhen X.; Li Q.; Zhang-Negrerie D.; Du Y.; Zhao K. J. Org. Chem. 2019, 84, 10402.
文章导航

/