研究论文

含咪唑并[1,2-a]吡啶的环丙烷二甲酰胺衍生物的合成及其抗急性髓系白血病活性研究

  • 吴律嘉 ,
  • 黎江东 ,
  • 石忠花 ,
  • 金鑫 ,
  • 王先恒 ,
  • 赵长阔 ,
  • 黄强
展开
  • a 遵义医科大学药学院 贵州遵义 563000
    b 遵义医科大学公共卫生学院 贵州遵义 563000

收稿日期: 2024-05-16

  修回日期: 2024-06-20

  网络出版日期: 2024-07-25

基金资助

国家自然科学基金(82360679); 贵州省科技计划(QKHJC-ZK[2022]-General 592); 贵州省科技计划(QKHZC [2022]-293); 及学术新苗培养及创新探索专项(QKHPTRC[2018]5772-013)

Synthesis and Anti-acute Myeloid Leukemia Activity of Cyclopropane-1,1-diamide Derivatives Containing Imidazo[1,2-a]pyridine

  • Lüjia Wu ,
  • Jiangdong Li ,
  • Zhonghua Shi ,
  • Xin Jin ,
  • Xianheng Wang ,
  • Changkuo Zhao ,
  • Qiang Huang
Expand
  • a School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000
    b School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000

Received date: 2024-05-16

  Revised date: 2024-06-20

  Online published: 2024-07-25

Supported by

National Natural Science Foundation of China(82360679); Natural Science Foundation of Guizhou Province(QKHJC-ZK[2022]-General 592); Natural Science Foundation of Guizhou Province(QKHZC [2022]-293); Academic Cultivation and Innovation Exploration Project(QKHPTRC[2018]5772-013)

摘要

合成了一系列含有咪唑并[1,2-a]吡啶的环丙烷二甲酰胺衍生物, 评估了这些化合物对FLT3-ITD激酶的抑制作用和对表达FLT3-ITD的两种急性髓系白血病细胞株的抗增殖作用. 基于咪唑并[1,2-a]吡啶的不同取代基, 对22种化合物进行了初步的构效关系探索. 结果表明, 大多数化合物对FLT3-ITD激酶具有一定的抑制作用, IC50值均低于0.5 μmol•L-1. 其中, N-(4-氟苯基)-N-(4-(7-((2-吗啉代乙基)氨酰基)咪唑并[1,2-a]吡啶-3-羰基)苯基)环丙烷-1,1-二甲酰胺(12a)具有最佳的FLT3-ITD激酶抑制活性, 且对表达FLT3-ITD的细胞系MV4-11和MOLM-13抗增殖作用最强, IC50值分别为0.06和0.2 μmol•L-1. 此外, 12a对非FLT3突变的细胞系, 如THP-1、HCT-116、A549、HepG2、K562和MCF-7细胞无抗增殖作用, 且对正常人肾小管上皮细胞(HK-2)、人肝祖细胞(HepaRG)和人胚胎肾细胞(HEK293)无细胞毒性. 化合物12a虽然对FLT3-ITD激酶的抑制活性和抗肿瘤细胞增值活性弱于阳性药Cabozantinib, 但为FLT3-ITD抑制剂的进一步研究提供一定的参考.

本文引用格式

吴律嘉 , 黎江东 , 石忠花 , 金鑫 , 王先恒 , 赵长阔 , 黄强 . 含咪唑并[1,2-a]吡啶的环丙烷二甲酰胺衍生物的合成及其抗急性髓系白血病活性研究[J]. 有机化学, 2025 , 45(1) : 286 -296 . DOI: 10.6023/cjoc202403053

Abstract

A series of cyclopropane-1,1-diamide derivatives containing imidazo[1,2-a]pyridine were synthesized. The inhibitory effects of these compounds on FLT3-ITD kinase and their anti-proliferative activities against two acute myeloid leukemia cell lines expressing FLT3-ITD were evaluated. With focused on the different substitutions of imidazo[1,2- a]pyridine, a preliminary exploration of the structure-activity relationship was conducted for 22 compounds. The results revealed that most compounds exhibited certain inhibitory effects on FLT3-ITD kinase with IC50 values below 0.5 μmol•L-1. Among them, N-(4-fluorophenyl)-N-(4-(7-((2-morpholinoethyl)carbamoyl)imidazo[1,2-a]pyridine-3-carbonyl)phenyl)cyclo- propane-1,1-dicarboxamide (12a) demonstrated the most potent FLT3-ITD kinase inhibitory activity and the strongest anti-proliferative effect on the MV4-11 and MOLM-13 cell lines expressing FLT3-ITD with IC50 values of 0.06 and 0.2 μmol•L-1, respectively. Moreover, compound 12a did not exhibit anti-proliferative activity against cell lines without FLT3 muta- tions, such as THP-1, HCT-116, A549, HepG2, K562, and MCF-7, and it displayed non-cytotoxicity towards normal human renal tubular epithelial cells (HK-2), human liver progenitor cells (HepaRG), and HEK293 (human embryonic kidney cells). Although 12a exhibits inferior inhibitory activity against FLT3-ITD kinase and anti-tumor cell proliferation compared to Cabozantinib in this study, it can provide a reference for further research into FLT3-ITD inhibitors.

参考文献

[1]
(a) Doe, I. S.; Smith, J.; Roe, P. J. Am. Chem. Soc. 1968, 90, 8234.
[1]
(b) Pelcovits, A.; Niroula, R. R. I. Med. J. 2013, 103(3), 38.
[1]
(c) Shimony, S.; Stahl, M.; Stone, R. M. Am. J. Hematol. 2023, 98, 502.
[1]
(d) Newell, L. F.; Cook, R. J. BMJ [Br. Med. J.] 2021, 375, n2026.
[1]
(e) Padmakumar, D.; Chandraprabha, V. R.; Gopinath, P.; Vimala Devi, A. R. T.; Anitha, G. R. J.; Sreelatha, M. M.; Padmakumar, A.; Sreedharan, H. Leuk. Res. 2021, 111, 106727.
[1]
(f) Pollyea, D. A.; Altman, J. K.; Assi, R.; Bixby, D.; Fathi, A. T.; Foran, J. M.; Gojo, I.; Hall, A. C.; Jonas, B. A.; Kishtagari, A.; Lancet, J.; Maness, L.; Mangan, J.; Mannis, G.; Marcucci, G.; Mims, A.; Moriarty, K.; Ali, M. M. J. Natl. Compr. Cancer Network 2023, 21, 503.
[2]
(a) Narayanan, D.; Weinberg, O. K. Int. J. Lab. Hematol. 2020, 42, 3.
[2]
(b) Chopra, M.; Bohlander, S. K. Genes, Chromosomes Cancer 2019, 58, 850.
[2]
(c) Kwon, A.; Weinberg, O. K. Clin. Lab. Med. 2023, 43, 657.
[2]
(d) DiNardo, C. D.; Erba, H. P.; Freeman, S. D.; Wei, A. H. Lancet 2023, 401, 2073.
[3]
(a) Thol, F.; Ganser, A. Curr. Treat. Options Oncol. 2020, 21, 66.
[3]
(b) Ochs, M. A.; Marini, B. L.; Perissinotti, A. J.; Foucar, C. E.; Pettit, K.; Burke, P.; Bixby, D. L.; Benitez, L. L. Ann. Hematol. 2022, 101, 1627.
[3]
(c) Bewersdorf, J. P.; Abdel-Wahab, O. Genes Dev. 2022, 36, 259.
[3]
(d) Bhansali, R. S.; Pratz, K. W.; Lai, C. J. Hematol. Oncol. 2023, 16, 9.
[3]
(e) Choi, J. H.; Shukla, M.; Abdul-Hay, M. Acta Haematol. 2023, 146, 431.
[3]
(f) Kayser, S.; Levis, M. J. Br. J. Haematol. 2022, 196, 316.
[3]
(g) Khanal, N.; Upadhyay, B. S.; Bhatt, V. R. Clin. Pharmacol. Ther. 2020, 108, 506.
[3]
(h) Reville, P. K.; Kadia, T. Curr. Treat. Options Oncol. 2020, 21, 34.
[4]
(a) Kantarjian, H. M.; Kadia, T. M.; DiNardo, C. D.; Welch, M. A.; Ravandi, F. Cancer 2021, 127, 1186.
[4]
(b) Rowe, J. M. Best Pract. Res., lin. Haematol. 2021, 34, 101248.
[5]
Kazi, J. U.; Rönnstrand, L. Physiol. Rev. 2019, 99, 1433.
[6]
(a) Isidori, A.; Visani, G.; Ferrara, F. Curr. Opin. Oncol. 2023, 35, 589.
[6]
(b) Nitika ; Wei, J.; Hui, A. M. Cancers 2022, 14, 1164.
[7]
(a) Patnaik, M. M. Leuk. Lymphoma 2018, 59, 2273.
[7]
(b) Grob, T.; Sanders, M. A.; Vonk, C. M.; Kavelaars, F. G.; Rijken, M.; Hanekamp, D. W.; Gradowska, P. L.; Cloos, J.; Fløisand, Y.; Kooy, M.; Manz, M. G.; Ossenkoppele, G. J.; Tick, L. W.; Havelange, V.; Löwenberg, B.; Jongen-Lavrencic, M.; Valk, P. J. M. J. Clin. Oncol. 2023, 41, 756.
[8]
(a) Bystrom, R.; Levis, M. J. Curr. Oncol. Rep. 2023, 25, 369.
[8]
(b) Kiyoi, H.; Kawashima, N.; Ishikawa, Y. Cancer Sci. 2020, 111, 312.
[8]
(c) Zhang, Y.; Yuan, L. Sci. Rep. 2021, 11, 13236.
[8]
(d) Lv, K.; Ren, J. G.; Han, X.; Gui, J.; Gong, C.; Tong, W. Blood 2021, 138, 2244.
[9]
(a) Zhong, Y.; Qiu, R. Z.; Sun, S. L.; Zhao, C.; Fan, T. Y.; Chen, M.; Li, N. G.; Shi, Z. H. J. Med. Chem. 2020, 63, 12403.
[9]
(b) Daver, N.; Venugopal, S.; Ravandi, F. Blood Cancer J. 2021, 11, 104.
[9]
(c) Zhao, J. C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J. P.; Zeidan, A. M. Blood Rev. 2022, 52, 100905.
[9]
(d) Egbuna, C.; Patrick-Iwuanyanwu, K. C.; Onyeike, E. N.; Khan, J.; Alshehri, B. J. Biomol. Struct. Dyn. 2022, 40, 12248.
[9]
(e) Arai, Y.; Chi, S.; Minami, Y.; Yanada, M. Int. J. Hematol. 2022, 116, 351.
[10]
(a) Antar, A. I.; Otrock, Z. K.; Jabbour, E.; Mohty, M.; Bazarbachi, A. Leukemia 2020, 34, 682.
[10]
(b) Garciaz, S.; Hospital, M. A. OncoTargets Ther. 2023, 16, 31.
[10]
(c) O'Farrell, A. C.; Miller, I. S.; Evans, R.; Alamanou, M.; Cary, M.; Udupi, G. M.; Lafferty, A.; Monsefi, N.; Cremona, M.; Prehn, J. H. M.; Verheul, H. M.; Gallagher, W. M.; Gehrmann, M.; Byrne, A. T. Proteomics: Clin. Appl. 2019, 13, e1800159.
[10]
(d) Cerchione, C.; Raíndo, A. P.; Orgueira, A. M.; Torre, A. M.; Pérez, L. B.; Marconi, G.; Isidori, A.; Encinas, M. M.; Martinelli, G. Expert Rev. Hematol. 2021, 14, 851.
[11]
(a) Reed, D. R.; Sen, J. M.; Pierce, E. J.; Elsarrag, R. Z.; Keng, M. K. J. Oncol. Pharm. Pract. 2020, 26, 1200.
[11]
(b) Naqvi, K.; Ravandi, F. Leuk. Lymphoma 2019, 60, 1866.
[11]
(c) Cortes, J. Clin. Adv. Hematol. Oncol. 2023, 21, 240.
[11]
(d) Zhao, J.; Song, Y.; Liu, D. Biomark. Res. 2019, 7, 19.
[11]
(e) Wang, E. S.; Goldberg, A. D.; Tallman, M.; Walter, R. B.; Karanes, C.; Sandhu, K.; Vigil, C. E.; Collins, R.; Jain, V.; Stone, R. M. J. Clin. Oncol. 2024, 42, 1776.
[11]
(f) Levis, M.; Perl, A. E. Blood Adv. 2020, 4, 1178.
[12]
(a) Ferng, T. T.; Terada, D.; Ando, M.; Tarver, T. C.; Chaudhary, F.; Lin, K. C.; Logan, A. C.; Smith, C. C. Mol. Cancer Ther. 2022, 21, 844.
[12]
(b) Ferng, T. T.; Tarver, T. C.; Smith, C. C. Blood 2017, 130, 2632.
[12]
(c) Leyte-Vidal, A.; Phan, S.; Khare, P.; Hu, F.; Zhang, C.; Cao, P.; Shah, N. P. Blood 2023, 142, 2265.
[12]
(d) Xu, J.; Ong, E. H. Q.; Hill, J.; Chen, A.; Chai, C. L. L. Bioorg. Med. Chem. 2014, 22, 6625.
[12]
(e) Law, B.; Rughwani, T.; Archer, T. C.; Kumar, L.; Lu, D.; Somanath, P.; Ma, Y.; Wang, X.; Sperandio, D.; Morris, S. Blood 2022, 140, 6191.
[13]
Friedman, R. Biochim. Biophys. Acta, Rev. Cancer 2022, 1877, 188666.
[14]
(a) Pragyandipta, P.; Pedapati, R. K.; Reddy, P. K.; Nayek, A.; Meher, R. K.; Guru, S. K.; Kantevari, S.; Naik, P. K. Chem.-Biol. Interact. 2023, 382, 110606.
[14]
(b) Hussain, R.; Rehman, W.; Rahim, F.; Khan, S.; Taha, M.; Khan, Y.; Sardar, A.; Khan, I.; Shah, S. A. A. J. Mol. Struct. 2023, 1293, 136185.
[14]
(c) Vanam, N. R.; Anireddy, J. S. Chem. Data Collect. 2023, 48, 101092.
[14]
(d) Nguyen, W.; Jacobson, J.; Jarman, K. E.; Blackmore, T. R.; Sabroux, H. J.; Lewin, S. R.; Purcell, D. F.; Sleebs, B. E. Eur. J. Med. Chem. 2020, 195, 112254.
[14]
(e) Vanda, D.; Zajdel, P.; Soural, M. Eur. J. Med. Chem. 2019, 181, 111569.
[14]
(f) Shi, L.; Li, T.; Mei, G.-J. Green Synth. Catal. 2022, 3, 227.
[15]
(a) Dokla, E. M. E.; Abdel-Aziz, A. K.; Milik, S. N.; McPhillie, M. J.; Minucci, S.; Abouzid, K. A. M. Bioorg. Med. Chem. 2022, 56, 116596.
[15]
(b) Peytam, F.; Emamgholipour, Z.; Mousavi, A.; Moradi, M.; Foroumadi, R.; Firoozpour, L.; Divsalar, F.; Safavi, M.; Foroumadi, A. Bioorg. Chem. 2023, 140, 106831.
[15]
(c) Boddiboyena, R.; Reddy, G. N.; Seelam, N. V.; Sarma, M.; Kolli, D.; Rajeswari, M.; Gudisela, M. R. Chem. Data Collect. 2023, 46, 101036.
[15]
(d) Güçlü, D.; Kuzu, B.; Tozlu, İ.; Taşpınar, F.; Canpınar, H.; Taşpınar, M.; Menges, N. Bioorg. Med. Chem. Lett. 2018, 28, 2647.
[15]
(e) Song, Y. N.; Lin, X.; Kang, D.; Li, X.; Zhan, P.; Liu, X.; Zhang, Q. Eur. J. Med. Chem. 2014, 82, 293.
[15]
(f) Frett, B.; McConnell, N.; Smith, C. C.; Wang, Y.; Shah, N. P.; Li, H.-Y. Eur. J. Med. Chem. 2015, 94, 123.
[16]
Huang, Q.; Wu, L.; Shi, J.; Li, J.; Lu, W.; Tang, F.; Zhu, L.; Zhong, W.; Zhao, C. Synthesis 2023, 55, 2570.
[17]
Grüllich, C. Recent Results Cancer Res. 2018, 211, 67.
[18]
(a) Zhang, J.; Chen, P.; Duan, Y.; Xiong, H.; Li, H.; Zeng, Y.; Liang, G.; Tang, Q.; Wu, D. Eur. J. Med. Chem. 2021, 215, 113273.
[18]
(b) Wang, L. X.; Liu, X.; Xu, S.; Tang, Q.; Duan, Y.; Xiao, Z.; Zhi, J.; Jiang, L.; Zheng, P.; Zhu, W. Eur. J. Med. Chem. 2017, 141, 538.
[19]
Lu, J. W.; Wang, A. N.; Liao, H. A.; Chen, C. Y.; Hou, H. A.; Hu, C. Y.; Tien, H. F.; Ou, D. L.; Lin, L. I. Cancer Lett. 2016, 376, 218.
[20]
Hassan, A.; Mubarak, F. A. F.; Shehadi, I. A.; Mosallam, A. M.; Temairk, H.; Badr, M.; Abdelmonsef, A. H. J. Enzyme Inhib. Med. Chem. 2023, 38, 2189578
[21]
Huang, D.; Huang, L.; Zhang, Q.; Li, J. Eur. J. Med. Chem. 2017, 140, 212.
文章导航

/