研究论文

钯/膦配合物催化Morita-Baylis-Hillman碳酸酯与氮杂二烯的[4+4]环化反应

  • 朱波 ,
  • 杨杨 ,
  • 刘淇尹 ,
  • 杜玮 ,
  • 陈应春
展开
  • 四川大学华西药学院 成都 610041

收稿日期: 2024-05-15

  修回日期: 2024-06-21

  网络出版日期: 2024-07-25

基金资助

国家自然科学基金(21971166)

Palladium/Phosphine Complex Catalyzed [4+4] Annulations of Morita-Baylis-Hillman Carbonates and 1-Azadienes

  • Bo Zhu ,
  • Yang Yang ,
  • Qiyin Liu ,
  • Wei Du ,
  • Yingchun Chen
Expand
  • West China School of Pharmacy, Sichuan University, Chengdu 610041
*Corresponding authors. E-mail:;

Received date: 2024-05-15

  Revised date: 2024-06-21

  Online published: 2024-07-25

Supported by

National Natural Science Foundation of China(21971166)

摘要

在醋酸钯和膦配体Synphos配合物的催化下, 从醛衍生的Morita-Baylis-Hillman (MBH)加成物碳酸酯可原位生成含π-烯丙基钯的1,4-全碳偶极子, 与1-氮杂二烯发生串联Michael加成/烯丙位取代反应, 构建一系列含有三取代环外双键的八元氮杂环产物, 并取得了中等到良好的E/Z选择性和阻转选择性. 此外, 在手性配体或者手性季铵盐的协同催化下能够实现中等的对映选择性控制.

本文引用格式

朱波 , 杨杨 , 刘淇尹 , 杜玮 , 陈应春 . 钯/膦配合物催化Morita-Baylis-Hillman碳酸酯与氮杂二烯的[4+4]环化反应[J]. 有机化学, 2024 , 44(12) : 3761 -3770 . DOI: 10.6023/cjoc202405020

Abstract

A [4+4] annulation reaction for the construction of medium-sized N-heterocycles is reported. This process involves the generation of all-carbon 1,4-dipoles containing a π-allylpalladium complex from Morita-Baylis-Hillman (MBH) carbonates under the catalysis of Pd/Synphos, which then undergo Michael addition/N-allylic alkylation with 1-azadienes. A spectrum of eight-membered N-heterocycles featuring a trisubstituted exo-cyclic double bond is furnished efficiently with moderate to good E/Z selectivity and moderate atroposelectivity. In addition, moderate enantioselectivity can be realized by using a chiral ligand or with the assistant of a chiral quaternary ammonium salt.

参考文献

[1]
(a) Laakso J. A.; Gloer J. B.; Wicklow D. T.; Dowd P. F. J. Org. Chem. 1992, 57, 2066.
[1]
(b) Lee S.; Sperry J. Bioorg. Med. Chem. 2022, 54, 116560.
[1]
(c) Toma T.; Kita Y.; Fukuyama T. J. Am. Chem. Soc. 2010, 132, 10233.
[1]
(d) Qin H.; Xu Z.; Cui Y.; Jia Y. Angew. Chem., Int. Ed. 2011, 50, 4447.
[1]
(e) Miloserdov F. M.; Kirillova M. S.; Muratore M. E.; Echavarren A. M. J. Am. Chem. Soc. 2018, 140, 5393.
[2]
(a) Reyes R. L.; Iwai T.; Sawamura M. Chem. Rev. 2021, 121, 8926.
[2]
(b) Wang Y.-H.; Jin Z.-F.; Zhou L.J.; Lv X. Org. Biomol. Chem. 2024, 22, 252.
[2]
(c) Li J.; Dong Z.-Y.; Zhao C.-G. New J. Chem. 2024, 48, 4645.
[3]
(a) Illuminati G.; Mandolini L. Acc. Chem. Res. 1981, 14, 95.
[3]
(b) Molander G.-A. Acc. Chem. Res. 1998, 31, 603.
[4]
(a) Zhang M.-M.; Qu B.-L.; Shi B.; Xiao W.-J.; Lu L.-Q. Chem. Soc. Rev. 2022, 51, 4146.
[4]
(b) Wang B.-C.; Wei Y.; Xiong F.-Y.; Qu B.-L.; Xiao W.-J.; Lu L.-Q. Sci. China Chem. 2022, 65, 2437.
[4]
(c) Shi L.; Xiong Q.; Wu S.-Y.; Li Y.; Shen P.; Lu J.; Ran G.-Y. Org. Lett. 2023, 25, 2030.
[4]
(d) Wang L.; Yang S.; Tang Y.; Li K.; Lu M.-X.; Guo H.-C. J. Org. Chem. 2024, 89, 5019.
[5]
(a) Li Q.-Y.; Pan R.; Wang M.-H.; Yao H.-Q.; Lin A.-J. Org. Lett. 2021, 23, 2292.
[5]
(b) Scuiller A.; Liu X.-Y.; Cordier M.; Garrec J.; Archambeau A. Synlett 2021, 32, 981.
[5]
(c) Song Q.; Liu Y.; Cai L.-L.; Cao X.-Y.; Qian S.; Wang Z.-Y. Chin. Chem. Lett. 2022, 33, 4549.
[5]
(d) Meng Y.-G.; Wang Q.; Yao X.-Y.; Wei D. H.; Liu Y.-G.; Li E.-Q.; Duan Z. Org. Lett. 2022, 24, 9205.
[5]
(e) Chen G.-H.; Ye Y.; Zhang D.-X.; Li H.-G.; Zhang N.; Liang G.-J.; Zhang D.; Zhou J.; Zhou H. Org. Chem. Front. 2023, 10, 4698.
[5]
(f) Xie H.-L.; Chen L.; Han Z.-Y.; Yang Z.-K.; Sun J.-W.; Huang H. Org. Lett. 2023, 25, 5011.
[5]
(g) Yuan C.-H.; Wu Y.; Wang D.-Q.; Zhang Z.-H.; Wang C.; Zhou L.-J.; Zhang C.; Song B.-A.; Guo H.-C. Adv. Synth. Catal. 2018, 360, 652.
[5]
(h) Niu B.; Wu X.-Y.; Wei Y.; Shi M. Org. Lett. 2019, 21, 4859.
[5]
(i) Yang W.-L.; Wang Y.-L.; Li W.; Gu B.-M.; Wang S.-W.; Luo X.-Y.; Tian B.-X.; Deng W.-P. ACS Catal. 2021, 11, 12557.
[5]
(j) Xu H.-B.; Ma S.-M. Angew. Chem., Int. Ed. 2023, 62, e202213676.
[6]
Gao C.; Wang H.-H.; Liu J.-T.; Li X.-X. ACS Catal. 2021, 11, 2684.
[7]
Gao Y.-F.; Wang H.; Chen X.-Q.; Qiao Y.-Y.; Miao Z.-Y. J. Org. Chem. 2023, 88, 11822.
[8]
(a) Chen Y.; Zang M.; Wang W.-J.; Liu Y.-Z.; Luo X.-Y.; Deng W.-P. Chin. J. Chem. 2023, 41, 2825.
[8]
(b) Chen G.-H.; Ye Y.; Zhang D.-X.; Li H.-J.; Zhang N.; Liang G.-J.; Zhang D.; Zhou J.; Zhou H. Org. Chem. Front. 2023, 10, 4698.
[9]
Yang Y.; Zhu B.; Zhu L.; Jiang Y.; Guo C.-L.; Gu J.; Ouyang Q.; Du W.; Chen Y.-C. Chem. Sci. 2021, 12, 11399.
[10]
(a) Lin W.; Zhang C.; Xu W.; Cheng Y.-Y.; Li P.-F.; Li W.-J. Adv. Synth. Catal. 2019, 361, 476.
[10]
(b) Hu D.; Gao Y.; Song X.; Du W.; Chen Y.-C. Eur. J. Org. Chem. 2020, 514.
[10]
(c) Jiang B.; Du W.; Chen Y.-C. Chem. Commun. 2020, 56, 7257.
[10]
(d) Yan J.-Z.; Li X.-P.; Chen Y.-Z.; Li Y.; Chen W.-W.; Zhan R.-T.; Huang H.-C. J. Org. Chem. 2020, 85, 12175.
[10]
(e) Wang C.-J. Yang Q.-Q.; Wang M.-X.; Shang Y.-H.; Tong X.-H.; Deng Y.-H.; Shao Z.-H. Org. Chem. Front. 2020, 7, 609.
[10]
(f) Yang X.-X.; Yan R.-J.; Ran G.-Y.; Chen C.; Yue J.-F.; Yan X.; Ouyang Q.; Du W.; Chen Y.-C. Angew. Chem., Int. Ed. 2021, 60, 26762
[10]
(g) Luo Q.-Q.; Tian Z.; Tang J.; Wang J.; Tian Y.; Peng C.; Zhan G.; Han B. ACS Catal. 2022, 12, 7221.
[10]
(h) Yang T.; Jiang Q.; Wang C.-M.; Li S.-L.; He C.-Y.; Chu W.-D.; Liu Q.-Z. Org. Lett. 2023, 25, 13, 2243.
[11]
(a) Tabata H.; Wada N.; Takada Y.; Oshitari T.; Takahashi H.; Natsugari H. J. Org. Chem. 2011, 76, 5123.
[11]
(b) Wang L.; Li S.; Marcus.; Arne R. P.; Wang A.; Rakesh P.; Kari R.; Dieter E. Angew. Chem., Int. Ed. 2016, 128, 11276.
[12]
For more details, see the Supporting Information.
[13]
(a) Xie P.-Z.; Huang Y. Org. Biomol. Chem. 2015, 13, 8578.
[13]
(b) Liu T.-Y.; Xie M.; Chen Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
[14]
(a) Ohmatsu K.; Imagawa N.; Ooi T. Nat. Chem. 2014, 6, 47.
[14]
(b) Ohmatsu K.; Kawai S.; Imagawa N.; Ooi T. ACS Catal. 2014, 4, 4304.
[15]
Deposition numbers 2355492 (E-3a) and 2355493 (Z-3a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre.
文章导航

/