研究论文

BF3•Et2O促进的环丙烯基甲醇衍生物重排反应研究

  • 荀苗苗 ,
  • 郭晶晶 ,
  • 马文兵 ,
  • 李宇强 ,
  • 袁长春 ,
  • 傅凯
展开
  • a 中北大学化学与化工学院 太原 030051
    b 中北大学德州产业技术研究院 山东德州 253000

收稿日期: 2024-05-13

  修回日期: 2024-07-17

  网络出版日期: 2024-08-19

基金资助

山东省自然科学基金(ZR2023MB043); 国家自然科学基金(22371266)

Study of BF3•Et2O-Promoted Rearrangement of Cyclopropenylcarbinols

  • Miaomiao Xun ,
  • Jingjing Guo ,
  • Wenbing Ma ,
  • Yuqiang Li ,
  • Changchun Yuan ,
  • Kai Fu
Expand
  • a School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051
    b Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong 253000

Received date: 2024-05-13

  Revised date: 2024-07-17

  Online published: 2024-08-19

Supported by

Natural Science Foundation of Shandong Province(ZR2023MB043); National Natural Science Foundation of China(22371266)

摘要

γ-亚乙烯基-丁烯酸内酯和苯并富烯结构单元在活性天然产物和药物化学中都具有重要的意义. 环丙烯基甲醇衍生物在BF3•Et2O的促进下, 脱除羟基后诱导环丙烯C—C断键反应的发生, 并形成联烯碳正离子中间体, 最后经不同的异构重排路径可以“一锅”实现γ-亚乙烯基-丁烯酸内酯和苯并富烯两类化合物的构建. 该合成方法拓展了两类化合物的合成策略, 二者的总收率可达68%~99%, 探究还发现电子效应和反应温度对二者的比例有着较大影响. 此外, 该反应为环丙烯结构的精准C—C键断裂提供了新方法.

本文引用格式

荀苗苗 , 郭晶晶 , 马文兵 , 李宇强 , 袁长春 , 傅凯 . BF3•Et2O促进的环丙烯基甲醇衍生物重排反应研究[J]. 有机化学, 2024 , 44(9) : 2760 -2776 . DOI: 10.6023/cjoc202405015

Abstract

γ-Ylidenebutenolides and benzofulvenes are of considerable importance in natural product and medicinal chemistry. Cyclopropenylcarbinols were promoted by BF3•Et2O to induce the C—C bond cleavage reaction of cyclopropenes via dehydroxylation to form an allene carbocation intermediate. This leads to the construction of γ-ylidenebutenolide and benzofulvene compounds in one pot via different isomerization rearrangement paths. This synthetic strategy expands the synthesis methods of two types of compounds, achieving a total yield of 68%~99%. In addition, the electronic effect and reaction temperature considerably influence the ratio of the two compounds. Moreover, the reaction provides a new method for precise C—C bond cleavage of cyclopropenes.

参考文献

[1]
(a) Wang, B.; Perea, M. A.; Sarpong, R. Angew. Chem., Int. Ed. 2020, 59, 18898.
[1]
(b) Leger, P. R.; Kuroda, Y.; Chang, S.; Jurczyk, J.; Sarpong, R. J. Am. Chem. Soc. 2020, 142, 15536.
[1]
(c) Hou, S.-H.; Prichina, A. Y.; Dong, G. Angew. Chem., Int. Ed. 2021, 60, 13057.
[1]
(d) Zhou, J.; Shi, X.; Zheng, H.; Chen, G.; Zhang, C.; Liu, X.; Cao, H. Org. Lett. 2022, 24, 3238.
[2]
(a) Li, P.; Zhang. X.; Shi. M. Chem. Commun. 2020, 56, 5457.
[2]
(b) Vicente. R. Chem. Rev. 2021, 121, 162.
[3]
Raiguru, B. P.; Nayak, S.; Mishra, D. R.; Das, T.; Mohapatra, S.; Mishra, N. P. Asian J. Org. Chem. 2020, 9, 1088.
[4]
Seo. S.; Willis, M. C. Org. Lett. 2017, 19, 4556.
[5]
(a) Uchida, M.; Kusano, G.; Kondo, Y.; Nozoe, S. Heterocycles 1978, 9, 139.
[5]
(b) Yue, G.; Yang, L.; Yuan, C.; Jiang, X.; Liu, B. Org. Lett., 2011, 13, 5406.
[6]
Xia, G.; Zhou, L.; Ma, J.; Wang, Y.; Ding, L.; Zhao, F.; Chen. L.; Qiu, F. Fitoterapia 2015, 103, 143.
[7]
Frérot, E.; Bagnoud, A.; Vuilleumier, C. Flavour Frag. J. 2002, 17, 218.
[8]
(a) Miao, S.; Andersen, R. J. J. Org. Chem. 1991, 56, 6275.
[8]
(b) Ortega, M. J.; Zubía, E.; Ocana, M. J.; Naranjo, S.; Salv?a, J. Tetrahedron 2000, 56, 3963.
[8]
(c) Sikorska, J.; Parker-Nance, S.; Davies-Coleman, M. T.; Vining, O. B.; Sikora, A. E.; McPhail, K. L. J. Nat. Prod. 2012, 75, 1824.
[8]
(d) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L. Bioorg. Med. Chem. Lett. 2014, 24, 1052.
[8]
(e) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L. Eur. J. Med. Chem. 2014, 82, 127.
[8]
(f) Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W. J. Antibiot. 2014, 67, 315.
[9]
Won, T. H.; Jeon, J.; Kim, S.-H.; Lee, S.-H.; Rho, B. J.; Oh, D.-C.; Oh, K.-B.; Shin, J. J. Nat. Prod. 2012, 75, 2055.
[10]
Li, L.; Wang, C.-Y.; Huang, H.; Mollo, E.; Cimino, G.; Guo, Y.-W. Helv. Chim. Acta 2008, 91, 111.
[11]
Wu, Q. H.; Sun, J. D.; Chen, J. W.; Zhang, H. W.; Guo, Y. W.; Wang, H. Mar. Drugs 2018, 16, 320.
[12]
(a) Walters, M. J.; Blobaum, A. L.; Kingsley, P. J.; Felts, A. S.; Sulikowski, G. A.; Marnett, L. J. Bioorg. Med. Chem. Lett. 2009, 19, 3271.
[12]
(b) Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397.
[12]
(c) Maguire, A. R.; Papot, S.; Ford, A.; Touhey, S.; O'Connor, R.; Clynes, M. Synlett 2001, 41.
[13]
Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T. P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. J. Med. Chem. 2008, 51, 4911.
[14]
(a) Lee, J.; Kim, H.; Lee, T. Gu.; Yang, I.; Won, D. H.; Choi, H.; Nam, S.-J.; Kang, H. J. Nat. Prod. 2014, 77, 1528.
[14]
(b) Shen, Q.; Xu, X.; Liu, C.; Zhao, W.; Xiang, N.; Chen, Y.; Miao, M.; Liu, Z.; Yang, G. Nat. Prod. Res. 2016, 30, 2545.
[15]
(a) Jo, J.; Jeong, M.; Ahn, J.-S.; Akter, J.; Kim, H.-S.; Suh, Y.-G.; Yun, H. J. Org. Chem. 2019, 84, 10953.
[15]
(b) Jeong, M.; Lee, H.; Kim, G.; Jo, J.; Chang, J. W.; Jung, J. H.; Suh, Y.-G.; Yun, H. Eur. J. Org. Chem. 2019, 6714.
[16]
(a) Donslund, B. S.; Nielsen, R. P.; M?nsted, S. M. N.; J?rgensen. K. A. Angew. Chem., Int. Ed. 2016, 55, 11124.
[16]
(b) Yue, J.-F.; Ran, G.-Y.; Yang, X.-X.; Du, W.; Chen, Y.-C. Org. Chem. Front. 2018, 5, 2676.
[16]
(c) Dubois, S.; Rodier, F.; Blanc, R.; Rahmani, R.; Héran, V.; Thibonnet, J.; Commeiras, L.; Parrain, J.-L. Org. Biomol. Chem. 2012, 10, 4712.
[16]
(d) Yuan, C.; Du, B.; Deng, H.; Man, Y.; Liu, B. Angew. Chem., Int. Ed. 2017, 56, 637.
[16]
(e) Du, B.; Huang, Z.; Wang, X.; Chen, T.; Shen, G.; Fu, S.; Liu, B. Nat. Commun. 2019, 10, 1892.
[17]
(a) Yuan, C.; Zhong, S.; Li, X.; Wang, Y.; Xun, M.; Bai, Y.; Zhu, K. Org. Biomol. Chem. 2018, 16, 7843.
[17]
(b) Li, X.; Wang, Y.; Fu. K.; Hu, Z; Li, Z.; Ma, W.; Xun, M.; Yuan, C. J. Heterocycl. Chem. 2020, 57, 2056.
[18]
(a) Basheer, A.; Mishima, M.; Marek, I. Org. Lett. 2011, 13, 4076.
[18]
(b) Mata, S.; López, L. A.; Vicente, R. Angew. Chem., Int. Ed. 2018, 57, 11422.
[19]
Ernouf, G.; Brayer, J.-L.; Meyer, C.; Cossy, J. Beilstein J. Org. Chem. 2019, 15, 333.
[20]
Smyrnov, V.; Waser, J. Org. Lett. 2023, 25, 6999.
[21]
(a) Zohar, E.; Marek. I. Org. Lett. 2004, 6, 341.
[21]
(b) Simaan, S.; Masarwa, A.; Zohar, E.; Stanger, A.; Bertus, P.; Marek, I. Chem.-Eur. J. 2009, 15, 8449.
[22]
He, F.; Koenigs, R. M. Chem. Commun. 2019, 55, 4881.
[23]
(a) Li, H.; Hao, W. J.; Wang, M.; Qin, X.; Tu, S. J.; Zhou, P.; Li, G. G.; Wang, J. Y.; Jiang, B. Org. Lett. 2018, 20, 4362.
[23]
(b) Meng, S. Y.; Wang, Y. L.; Liu, J.; Zheng, J.; Qian, X.; Wang, Q. R. Org. Lett. 2022, 24, 757.
[23]
(c) Chen, Z.; Yu, S.; Zhou, Y.; Li, H.; Qiu, Q.; Li, M.; Wang, Z. Chin. J. Org. Chem. 2023, 43, 3107 (in Chinese).
[23]
(陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳, 有机化学, 2023, 43, 3107.)
[24]
Muthusamy, S.; Sivaguru, M. Org. Lett. 2014, 16, 4248.
文章导航

/