基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物
收稿日期: 2024-06-01
修回日期: 2024-07-15
网络出版日期: 2024-08-26
基金资助
国家自然科学基金(U2004189); 中原科技创新领军人才项目(224200510009); 河南省博士后基金(HN2022041)
Synthesis of C2-Spiroindolines Based on the Cascade Reaction of 2-Aryl-3H-indoles with Cyclopropanols
Received date: 2024-06-01
Revised date: 2024-07-15
Online published: 2024-08-26
Supported by
National Natural Science Foundation of China(U2004189); Central Plains Science and Technology Innovation Leader Project(224200510009); Postdoctoral Research Grant in Henan Province(HN2022041)
杨雪莹 , 徐园双 , 张新迎 , 范学森 . 基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物[J]. 有机化学, 2025 , 45(2) : 694 -706 . DOI: 10.6023/cjoc202406001
A novel synthesis of C2-spiroindoline derivatives based on the cascade reaction of 2-aryl-3H-indoles with cyclo- propanols is presented. The formation of product involves Rh(III)-catalyzed aryl C(sp2)—H bond alkylation of 2-aryl- 3H-indole, which is followed by intramolecular spiroannulation. In this tandem process, cyclopropanol acts as not only an alkylating agent but also a masked nucleophile to take part in the construction of the spirocyclic scaffold. Meanwhile, air acts as an economical and sustainable oxidant to promote the regeneration of the active catalyst. By using this method, hybrid compounds containing the central scaffolds of some clinical drugs were prepared effectively. In general, this newly developed method has advantages such as easily obtainable substrates, concise synthetic procedure, excellent atom-economy, good compatibility with diverse functional groups and ready scalability.
| [1] | (a) Katayama, K.; Arai, Y.; Murata, K.; Saito, S.; Nagata, T.; Takashima, K.; Yoshida, A.; Masumura, M.; Koda, S.; Okada, H.; Muto, T. Bioorg. Med. Chem. 2020, 28, 115348. |
| [1] | (b) Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150. |
| [1] | (c) Wang, Q.; Song, H.; Wang, Q. Chin. Chem. Lett. 2022, 33, 859. |
| [1] | (d) Divar, M.; Edraki, N.; Damghani, T.; Moosavi, F.; Mohabbati, M.; Alipour, A.; Pirhadi, S.; Saso, L.; Khabnadideh, S.; Firuzi, O. Bioorg. Med. Chem. 2023, 90, 117367. |
| [2] | (a) Bariwal, J.; Voskressensky, L.; Vandereycken, E. Chem. Soc. Rev. 2018, 47, 3831. |
| [2] | (b) Ji, Y.; He, X.; Peng, C.; Huang, W. Org. Biomol. Chem. 2019, 17, 2850. |
| [2] | (c) Dhote, P. S.; Patel, P.; Vanka, K.; Ramana, C. V. Org. Biomol. Chem. 2021, 19, 7970. |
| [3] | (a) Zhang, B.; Zhang, X.; Hu, B.; Sun, D.; Wang, S.; Zhang- Negrerie, D.; Du, Y. Org. Lett. 2017, 19, 902. |
| [3] | (b) Marien, N.; Reddy, B. N.; De Vleeschouwer, F.; Goderis, S.; Van Hecke, K.; Verniest, G. Angew. Chem., Int. Ed. 2018, 57, 5660. |
| [3] | (c) Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Eur. J. Org. Chem. 2022, e202200826. |
| [3] | (d) Sah, P.; Gond, A. K.; Saini, G.; Kapur, M. Org. Lett. 2023, 25, 9170. |
| [4] | (a) Fu, W.; Song, Q. Org. Lett. 2018, 20, 393. |
| [4] | (b) Zhao, Y.-L.; An, J.-X.; Yang, F.-F.; Guan, X.; Fu, X.-Z.; Li, Z.-Q.; Wang, D.-P.; Zhou, M.; Yang, Y.-Y.; He, B. Adv. Synth. Catal. 2022, 364, 1277. |
| [4] | (c) Li, C.; Zhao, B.; Mao, G.; Deng, G.-J. Chem. Commun. 2023, 59, 7044. |
| [4] | (d) Dong, X.; Liu, X.; Wang, L.; Zhang, Y.; Li, J.; Tian, L.; Zhao, Y. Org. Lett. 2023, 25, 9170. |
| [5] | (a) Kong, L.; Wang, M.; Zhang, F.; Xu, M.; Li, Y. Org. Lett. 2016, 18, 6124. |
| [5] | (b) Liu, X.; Yan, X.; Yu, J.-H.; Tang, Y.; Wang, K.; Zhang, H. Org. Lett. 2019, 21, 5626. |
| [5] | (c) Liu, X.; Yan, X.; Tang, Y.; Jiang, C.-S.; Yu, J.-H.; Wang, K.; Zhang, H. Chem. Commun. 2019, 55, 6535. |
| [5] | (d) Nagare, Y. K.; Shah, I. A.; Yadav, J.; Pawar, A. P.; Rangan, K.; Choudhary, R.; Iype, E.; Kumar, I. J. Org. Chem. 2022, 87, 15771. |
| [6] | (a) Wang, J.; Chen, Y.; Du, W.; Chen, N.; Fu, K.; He, Q.; Shao, L. Tetrahedron 2022, 127, 133101. |
| [6] | (b) Reddy, C. R.; Theja, A.; Srinivasu, E.; Subbarao, M. Org. Lett. 2024, 26, 68. |
| [7] | (a) Sinha, S. K.; Ghosh, P.; Jain, S.; Maiti, S.; Al-Thabati, S. A.; Alshehri, A.; Mokhtar, M.; Maiti, D. Chem. Soc. Rev. 2023, 52, 7461. |
| [7] | (b) Seth, K. Org. Chem. Front. 2022, 9, 3102. |
| [7] | (c) Prabagar, B.; Yang, Y.; Shi, Z. Chem. Soc. Rev. 2021, 50, 11249. |
| [7] | (d) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957. |
| [7] | (e) Zhou, Q.; Li, B.; Zhang, X.; Fan, X. Org. Biomol. Chem. 2024, 22, 2324. |
| [7] | (f) Shang, M.; Zhang, L.; Chen, M.; Hu, W.; He, X.; Lu, H. Chin. J. Org. Chem. 2022, 42, 3816 (in Chinese). |
| [7] | (商铭洲, 张兰兰, 陈淼淼, 胡汪成, 何心伟, 陆红健, 有机化学, 2022, 42, 3816.) |
| [7] | (g) Fu, L.; Xu, W.; Pu, M.; Wu, Y.-D.; Liu, Y.; Wan, J.-P. Org. Lett. 2022, 24, 3003. |
| [7] | (h) Chen, D.; Zhou, L.; Liu, Y.; Wan, J.-P. Chem. Commun. 2023, 59, 4036. |
| [7] | (i) Chen, D.; Wan, C.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2023, 88, 4833. |
| [8] | (a) Huang, J.-R.; Qin, L.; Zhu, Y.-Q.; Song, Q.; Dong, L. Chem. Commun. 2015, 51, 2844. |
| [8] | (b) Hu, W.-B.; Qiu, Y.-Q.; Wei, W.-Y.; Li, Q.; Xu, Y.-J. J. Org. Chem. 2022, 87, 6179. |
| [8] | (c) Gao, J.; Luo, K.; Wei, X.; Wang, H.; Liu, H.; Zhou, Y. Org. Lett. 2023, 25, 3341. |
| [8] | (d) Yang, Z.; Li, P.; Chen, Z.; Wu, X.-F. Adv. Synth. Catal. 2023, 365, 3855. |
| [9] | (a) Nikolaev, A.; Orellana, A. Synthesis 2016, 48, 1741. |
| [9] | (b) Mills, L. R.; Rousseaux, S. A. L. Eur. J. Org. Chem. 2019, 1, 8. |
| [9] | (c) McDonald, T. R.; Mills, L. R.; West, M. S.; Rousseaux, S. A. L. Chem. Rev. 2021, 121, 3. |
| [10] | (a) Zhou, X.; Yu, S.; Kong, L.; Li, X. ACS Catal. 2016, 6, 647. |
| [10] | (b) Chen, M.-W.; Lou, M.; Deng, Z.; Yang, Q.; Peng, Y. Asian J. Org. Chem. 2021, 10, 192. |
| [10] | (c) Ramachandran, K.; Anbarasan, P. Chem. Commun. 2022, 58, 10536. |
| [10] | (d) Paul, T.; Basak, S.; Punniyamurthy, T. Org. Lett. 2022, 24, 6000. |
| [10] | (e) Ramachandran, K.; Anbarasan, P. Org. Lett. 2022, 24, 6745. |
| [10] | (f) Liu, Z.-K.; Zeng, J.-H.; Zhan, Z.-P. Org. Chem. Front. 2023, 10, 399. |
| [11] | (a) Chen, J.; Yin, C.; Zhou, J.; Yu, C.; Eur. J. Org. Chem. 2021, 6, 915. |
| [11] | (b) Wang, S.; Miao, E.; Wang, H.; Song, B.; Huang, W.; Yang, W. Chem. Commun. 2021, 57, 5929. |
| [11] | (c) Jiang, J.; Liu, J.; Yang, Z.; Zheng, L.; Liu, Z.-Q. Adv. Synth. Catal. 2022, 364, 2540. |
| [11] | (d) Chen, W.; Mao, Y.; Wang, M.; Ling, F.; Li, C.; Chen, Z.; Yao, J. Org. Biomol. Chem. 2023, 21, 775. |
| [12] | (a) Guo, C.; Li, B.; Liu, H.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 7189. |
| [12] | (b) Zhou, Q.; Song, X.; Zhang, X.; Fan, X. Org. Chem. Front. 2021, 8, 4131. |
| [12] | (c) Song, X.; Wang, K.; Xue, L.; Yu, H.; Zhang, X.; Lee, R. Fan, X. Org. Chem. Front. 2022, 9, 4583. |
| [13] | (a) He, X.; Liu, K.; Yan, S.; Wang, Y.; Jiang, Y.; Zhang, X.; Fan, X. J. Org. Chem. 2024, 89, 1880. |
| [13] | (b) Hu, B.; Chen, G.; Zhao, J.; Xue, L.; Jiang, Y.; Zhang, X.; Fan, X. J. Org. Chem. 2021, 86, 10330. |
| [13] | (c) Cai, X.; Song, X.; Zhu, Q.; Zhang, X.; Fan, X. J. Org. Chem. 2022, 87, 11048. |
| [13] | (d) Yang, C.; Zhang, X.; Fan, X. Org. Chem. Front. 2023, 10, 4282. |
| [13] | (e) Zhou, Q.; Song, X.; Zhang, X.; Fan, X. Org. Lett. 2022, 24, 1280. |
| [13] | (f) Yu, C.; Xu, Y.; Zhang, X.; Fan, X. Org. Lett. 2022, 24, 9473. |
| [13] | (g) Wang, K.; Sun, Y.; Li, B.; Zhang, X.; Fan, X. Org. Lett. 2024, 26, 3091. |
| [14] | Li, Y.; Li, B.; Wang, W.; Huang, W.; Zhang, X.; Chen, K.; Shi, Z. Angew. Chem. 2011, 123, 2163. |
/
| 〈 |
|
〉 |