研究论文

基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物

  • 杨雪莹 ,
  • 徐园双 ,
  • 张新迎 ,
  • 范学森
展开
  • 河南师范大学化学化工学院 河南省有机功能分子与药物创新重点实验室 河南新乡 453007

收稿日期: 2024-06-01

  修回日期: 2024-07-15

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(U2004189); 中原科技创新领军人才项目(224200510009); 河南省博士后基金(HN2022041)

Synthesis of C2-Spiroindolines Based on the Cascade Reaction of 2-Aryl-3H-indoles with Cyclopropanols

  • Xueying Yang ,
  • Yuanshuang Xu ,
  • Xinying Zhang ,
  • Xuesen Fan
Expand
  • Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007

Received date: 2024-06-01

  Revised date: 2024-07-15

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(U2004189); Central Plains Science and Technology Innovation Leader Project(224200510009); Postdoctoral Research Grant in Henan Province(HN2022041)

摘要

报道了一种基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物的新方法. 产物的生成经历了三价铑催化下2-芳基-3H-吲哚的芳基C(sp2)—H键烷基化和随后的分子内螺环化. 在该串联反应过程中, 环丙醇不仅是烷基化试剂, 而且作为掩蔽的亲核试剂参与了螺环骨架的构建; 而空气作为一种经济且可持续的氧化剂, 有效地促进了催化剂的再生. 另外, 该方法也可用于一些含有药物分子骨架的杂化体化合物的合成. 所开发的方法具有底物易得、过程简洁、原子经济性高、官能团耐受性好、易于放大等优点.

本文引用格式

杨雪莹 , 徐园双 , 张新迎 , 范学森 . 基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物[J]. 有机化学, 2025 , 45(2) : 694 -706 . DOI: 10.6023/cjoc202406001

Abstract

A novel synthesis of C2-spiroindoline derivatives based on the cascade reaction of 2-aryl-3H-indoles with cyclo- propanols is presented. The formation of product involves Rh(III)-catalyzed aryl C(sp2)—H bond alkylation of 2-aryl- 3H-indole, which is followed by intramolecular spiroannulation. In this tandem process, cyclopropanol acts as not only an alkylating agent but also a masked nucleophile to take part in the construction of the spirocyclic scaffold. Meanwhile, air acts as an economical and sustainable oxidant to promote the regeneration of the active catalyst. By using this method, hybrid compounds containing the central scaffolds of some clinical drugs were prepared effectively. In general, this newly developed method has advantages such as easily obtainable substrates, concise synthetic procedure, excellent atom-economy, good compatibility with diverse functional groups and ready scalability.

参考文献

[1]
(a) Katayama, K.; Arai, Y.; Murata, K.; Saito, S.; Nagata, T.; Takashima, K.; Yoshida, A.; Masumura, M.; Koda, S.; Okada, H.; Muto, T. Bioorg. Med. Chem. 2020, 28, 115348.
[1]
(b) Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150.
[1]
(c) Wang, Q.; Song, H.; Wang, Q. Chin. Chem. Lett. 2022, 33, 859.
[1]
(d) Divar, M.; Edraki, N.; Damghani, T.; Moosavi, F.; Mohabbati, M.; Alipour, A.; Pirhadi, S.; Saso, L.; Khabnadideh, S.; Firuzi, O. Bioorg. Med. Chem. 2023, 90, 117367.
[2]
(a) Bariwal, J.; Voskressensky, L.; Vandereycken, E. Chem. Soc. Rev. 2018, 47, 3831.
[2]
(b) Ji, Y.; He, X.; Peng, C.; Huang, W. Org. Biomol. Chem. 2019, 17, 2850.
[2]
(c) Dhote, P. S.; Patel, P.; Vanka, K.; Ramana, C. V. Org. Biomol. Chem. 2021, 19, 7970.
[3]
(a) Zhang, B.; Zhang, X.; Hu, B.; Sun, D.; Wang, S.; Zhang- Negrerie, D.; Du, Y. Org. Lett. 2017, 19, 902.
[3]
(b) Marien, N.; Reddy, B. N.; De Vleeschouwer, F.; Goderis, S.; Van Hecke, K.; Verniest, G. Angew. Chem., Int. Ed. 2018, 57, 5660.
[3]
(c) Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Eur. J. Org. Chem. 2022, e202200826.
[3]
(d) Sah, P.; Gond, A. K.; Saini, G.; Kapur, M. Org. Lett. 2023, 25, 9170.
[4]
(a) Fu, W.; Song, Q. Org. Lett. 2018, 20, 393.
[4]
(b) Zhao, Y.-L.; An, J.-X.; Yang, F.-F.; Guan, X.; Fu, X.-Z.; Li, Z.-Q.; Wang, D.-P.; Zhou, M.; Yang, Y.-Y.; He, B. Adv. Synth. Catal. 2022, 364, 1277.
[4]
(c) Li, C.; Zhao, B.; Mao, G.; Deng, G.-J. Chem. Commun. 2023, 59, 7044.
[4]
(d) Dong, X.; Liu, X.; Wang, L.; Zhang, Y.; Li, J.; Tian, L.; Zhao, Y. Org. Lett. 2023, 25, 9170.
[5]
(a) Kong, L.; Wang, M.; Zhang, F.; Xu, M.; Li, Y. Org. Lett. 2016, 18, 6124.
[5]
(b) Liu, X.; Yan, X.; Yu, J.-H.; Tang, Y.; Wang, K.; Zhang, H. Org. Lett. 2019, 21, 5626.
[5]
(c) Liu, X.; Yan, X.; Tang, Y.; Jiang, C.-S.; Yu, J.-H.; Wang, K.; Zhang, H. Chem. Commun. 2019, 55, 6535.
[5]
(d) Nagare, Y. K.; Shah, I. A.; Yadav, J.; Pawar, A. P.; Rangan, K.; Choudhary, R.; Iype, E.; Kumar, I. J. Org. Chem. 2022, 87, 15771.
[6]
(a) Wang, J.; Chen, Y.; Du, W.; Chen, N.; Fu, K.; He, Q.; Shao, L. Tetrahedron 2022, 127, 133101.
[6]
(b) Reddy, C. R.; Theja, A.; Srinivasu, E.; Subbarao, M. Org. Lett. 2024, 26, 68.
[7]
(a) Sinha, S. K.; Ghosh, P.; Jain, S.; Maiti, S.; Al-Thabati, S. A.; Alshehri, A.; Mokhtar, M.; Maiti, D. Chem. Soc. Rev. 2023, 52, 7461.
[7]
(b) Seth, K. Org. Chem. Front. 2022, 9, 3102.
[7]
(c) Prabagar, B.; Yang, Y.; Shi, Z. Chem. Soc. Rev. 2021, 50, 11249.
[7]
(d) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[7]
(e) Zhou, Q.; Li, B.; Zhang, X.; Fan, X. Org. Biomol. Chem. 2024, 22, 2324.
[7]
(f) Shang, M.; Zhang, L.; Chen, M.; Hu, W.; He, X.; Lu, H. Chin. J. Org. Chem. 2022, 42, 3816 (in Chinese).
[7]
(商铭洲, 张兰兰, 陈淼淼, 胡汪成, 何心伟, 陆红健, 有机化学, 2022, 42, 3816.)
[7]
(g) Fu, L.; Xu, W.; Pu, M.; Wu, Y.-D.; Liu, Y.; Wan, J.-P. Org. Lett. 2022, 24, 3003.
[7]
(h) Chen, D.; Zhou, L.; Liu, Y.; Wan, J.-P. Chem. Commun. 2023, 59, 4036.
[7]
(i) Chen, D.; Wan, C.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2023, 88, 4833.
[8]
(a) Huang, J.-R.; Qin, L.; Zhu, Y.-Q.; Song, Q.; Dong, L. Chem. Commun. 2015, 51, 2844.
[8]
(b) Hu, W.-B.; Qiu, Y.-Q.; Wei, W.-Y.; Li, Q.; Xu, Y.-J. J. Org. Chem. 2022, 87, 6179.
[8]
(c) Gao, J.; Luo, K.; Wei, X.; Wang, H.; Liu, H.; Zhou, Y. Org. Lett. 2023, 25, 3341.
[8]
(d) Yang, Z.; Li, P.; Chen, Z.; Wu, X.-F. Adv. Synth. Catal. 2023, 365, 3855.
[9]
(a) Nikolaev, A.; Orellana, A. Synthesis 2016, 48, 1741.
[9]
(b) Mills, L. R.; Rousseaux, S. A. L. Eur. J. Org. Chem. 2019, 1, 8.
[9]
(c) McDonald, T. R.; Mills, L. R.; West, M. S.; Rousseaux, S. A. L. Chem. Rev. 2021, 121, 3.
[10]
(a) Zhou, X.; Yu, S.; Kong, L.; Li, X. ACS Catal. 2016, 6, 647.
[10]
(b) Chen, M.-W.; Lou, M.; Deng, Z.; Yang, Q.; Peng, Y. Asian J. Org. Chem. 2021, 10, 192.
[10]
(c) Ramachandran, K.; Anbarasan, P. Chem. Commun. 2022, 58, 10536.
[10]
(d) Paul, T.; Basak, S.; Punniyamurthy, T. Org. Lett. 2022, 24, 6000.
[10]
(e) Ramachandran, K.; Anbarasan, P. Org. Lett. 2022, 24, 6745.
[10]
(f) Liu, Z.-K.; Zeng, J.-H.; Zhan, Z.-P. Org. Chem. Front. 2023, 10, 399.
[11]
(a) Chen, J.; Yin, C.; Zhou, J.; Yu, C.; Eur. J. Org. Chem. 2021, 6, 915.
[11]
(b) Wang, S.; Miao, E.; Wang, H.; Song, B.; Huang, W.; Yang, W. Chem. Commun. 2021, 57, 5929.
[11]
(c) Jiang, J.; Liu, J.; Yang, Z.; Zheng, L.; Liu, Z.-Q. Adv. Synth. Catal. 2022, 364, 2540.
[11]
(d) Chen, W.; Mao, Y.; Wang, M.; Ling, F.; Li, C.; Chen, Z.; Yao, J. Org. Biomol. Chem. 2023, 21, 775.
[12]
(a) Guo, C.; Li, B.; Liu, H.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 7189.
[12]
(b) Zhou, Q.; Song, X.; Zhang, X.; Fan, X. Org. Chem. Front. 2021, 8, 4131.
[12]
(c) Song, X.; Wang, K.; Xue, L.; Yu, H.; Zhang, X.; Lee, R. Fan, X. Org. Chem. Front. 2022, 9, 4583.
[13]
(a) He, X.; Liu, K.; Yan, S.; Wang, Y.; Jiang, Y.; Zhang, X.; Fan, X. J. Org. Chem. 2024, 89, 1880.
[13]
(b) Hu, B.; Chen, G.; Zhao, J.; Xue, L.; Jiang, Y.; Zhang, X.; Fan, X. J. Org. Chem. 2021, 86, 10330.
[13]
(c) Cai, X.; Song, X.; Zhu, Q.; Zhang, X.; Fan, X. J. Org. Chem. 2022, 87, 11048.
[13]
(d) Yang, C.; Zhang, X.; Fan, X. Org. Chem. Front. 2023, 10, 4282.
[13]
(e) Zhou, Q.; Song, X.; Zhang, X.; Fan, X. Org. Lett. 2022, 24, 1280.
[13]
(f) Yu, C.; Xu, Y.; Zhang, X.; Fan, X. Org. Lett. 2022, 24, 9473.
[13]
(g) Wang, K.; Sun, Y.; Li, B.; Zhang, X.; Fan, X. Org. Lett. 2024, 26, 3091.
[14]
Li, Y.; Li, B.; Wang, W.; Huang, W.; Zhang, X.; Chen, K.; Shi, Z. Angew. Chem. 2011, 123, 2163.
文章导航

/