研究论文

光催化胺与二硫化碳合成硫脲

  • 李伟 ,
  • 王奕森 ,
  • 周荣 ,
  • 高文超
展开
  • 太原理工大学化学与化工学院 太原 030024

收稿日期: 2024-05-07

  修回日期: 2024-07-02

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(21901179)

Synthesis of Thioureas from Amines and CS2 via Photoredox Catalysis

  • Wei Li ,
  • Yisen Wang ,
  • Rong Zhou ,
  • Wenchao Gao
Expand
  • College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024

Received date: 2024-05-07

  Revised date: 2024-07-02

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(21901179)

摘要

近年来, 光催化已经发展成为合成化学、药物化学中构建新化合物的一种重要方法. 以CS2为硫羰基源, 与胺在可见光照射下成功合成了多种对称及非对称硫脲. 在机理上, CS2与胺加成后在光催化剂作用下通过单电子氧化产生硫自由基, 并形成活性二聚物被胺类化合物亲核取代生成硫脲化合物. 本方法反应条件温和, 官能团容忍度好, 合成操作简便.

本文引用格式

李伟 , 王奕森 , 周荣 , 高文超 . 光催化胺与二硫化碳合成硫脲[J]. 有机化学, 2025 , 45(1) : 240 -245 . DOI: 10.6023/cjoc202405007

Abstract

In recent years, photocatalysis has become an important tool to construct new compounds in synthetic and pharmaceutical chemistry. In this work, various symmetric and unsymmetric thioureas were successfully synthesized by photoredox catalysis using CS2 as thiocarbonyl source. For the mechanism, thiyl radicals were generated via single electron transfer process under photoredox catalysis after the nucleophilic addition of amines to CS2, and then dimerized to reactive disulfides, which reacted with the other amines to form thioureas. The method features mild conditions, good functional group tolerance, and simple operation.

参考文献

[1]
Mahanta, N.; Szantai-Kis, M.; Petersson, E. J.; Mitchell, D. A. ACS Chem. Biol. 2019, 14, 142.
[2]
Gurdal, E. E.; Durmaz, I.; Cetin-Atalay, R. J. Enzyme Inhib. Med. Chem. 2014, 29, 205.
[3]
Thanh, N. D.; Giang, N. T. K.; Toan, V. N.; Van, T. K. H.; Tri, N. M.; Toanae, D. N. New J. Chem. 2023, 47, 22360.
[4]
Klein, J. J.; Hecht, S. Org. Lett. 2012, 14, 330.
[5]
Nedeljković, N.; Nikolić, M.; Čanović, P.; Milan, Z.; Zarić, R. Ž.; Bošković, J.; Vesović, M.; Bradić, J.; Anđić, M.; Kočović, A.; Nikolić, M.; Jakovljević, V.; Vujić, Z.; Dobričić, V. Pharmaceutics 2023, 16, 1.
[6]
Liu, J.; Liao, P.; Hu, J.; Zhu, H.; Wang, Y.; Li, Y.; Li, Y.; He, B. Molecules 2017, 22, 238.
[7]
Kumar, K. N.; Reddy, M. M.; Panchami, H.; Velayutham, R.; Dhaked, D. K.; Swain, S. P. Mol. Catal. 2022, 524, 112324.
[8]
Lee, H.; Nam, H.; Lee, S. Y. J. Am. Chem. Soc. 2024, 146, 3065.
[9]
Zhou, X.-Y.; Li, X.-Y.; Zhang, Z.; Yu, D.-G. Chin. Chem. Lett. 2021, 32, 4015.
[10]
Li, X.-Y.; Liu, Y.; Chen, X.-L.; Lu, X.-Y.; Liang, X.-X.; Zhu, S.-S.; Wei, C.-W.; Qu, L.-B.; Yu, B. Green Chem. 2020, 22, 4445.
[11]
Wu, Y.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2020, 31, 2999.
[12]
Ding, C.; Wang, S.; Sheng, Y.; Dai, Q.; Zhao, Y.; Liang, G.; Song, Z. RSC Adv. 2019, 9, 26768.
[13]
Zhong, P.; Wu, J.; Liu, J.-B.; Luo, N. Tetrahedron Lett. 2022, 108, 154143.
[14]
Phaenok, S.; Nguyen, L. A.; Soorukram, D.; Nguyen, T. T. T.; Retailleau, P.; Nguyen, T. B. Chem.-Eur. J. 2024, 30, e202303703.
[15]
(a) Su, Y.; Zou, Y.; Xiao, W. Chin. J. Org. Chem. 2022, 42, 3201 (in Chinese).
[15]
(苏艺雯, 邹有全, 肖文精, 有机化学, 2022, 42, 3201.)
[15]
(b) Xu, H.; Zhang, J.; Zuo, J.; Wang, F.; Lü, J.; Hun, X.; Yang, D. Chin. J. Org. Chem. 2022, 42, 4037 (in Chinese).
[15]
(徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山, 有机化学, 2022, 42, 4037.)
[15]
(c) Pu, J.; Jia, X.; Han, L.; Li, Q. Chin. J. Org. Chem. 2023, 43, 2591 (in Chinese).
[15]
(普佳霞, 贾小英, 韩丽荣, 李清寒, 有机化学, 2023, 43, 2591.)
[16]
Liu, H.; Zhao, L.; Yuan, Y.; Xu, Z.; Chen, K.; Qiu, S.; Tan, H. ACS Catal. 2016, 6, 1732.
[17]
Gao, W.-C.; Li, W.; Zhang, J.; Chang, H.-H.; Zhou, R. Green Synth. Catal. 2024, 10.1016/j.gresc.2024.02.008.
文章导航

/