研究论文

双功能硫脲催化剂在“一锅法”制备多肽和环状碳酸酯反应中的应用

  • 王凯悦 ,
  • 许明诺 ,
  • 李博 ,
  • 伍广朋
展开
  • a 杭州师范大学材料化学与化工学院 杭州 310036
    b 浙江大学高分子科学与工程学系 杭州 310058

收稿日期: 2024-05-24

  修回日期: 2024-08-06

  网络出版日期: 2024-09-02

基金资助

杭州师范大学开放课题基金(KFJJ2023005)

Application of Bifunctional Thiourea Catalyst in One Pot Preparation of Polypeptides and Cyclic Carbonates

  • Kaiyue Wang ,
  • Mingnuo Xu ,
  • Bo Li ,
  • Guangpeng Wu
Expand
  • a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036
    b Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058

Received date: 2024-05-24

  Revised date: 2024-08-06

  Online published: 2024-09-02

Supported by

Hangzhou Normal University(KFJJ2023005)

摘要

设计合成了一系列双功能硫脲催化剂用于催化N-羧基环内酸酐(NCA)开环聚合反应生成多肽, 同时固定反应过程中释放的二氧化碳(CO2), 将其转化成具有工业价值的环状碳酸酯, 通过串联反应实现“一锅法”制备多肽和环状碳酸酯, 提高了原子利用率. 串联反应过程中助引发剂环氧烷烃的加入不但起到活化NCA单体的作用, 还可有效地与CO2发生环加成反应生成环状碳酸酯. 通过优化催化剂结构和反应条件可极大地提高反应效率, 这一串联方法为原子经济性地合成两种相关化合物提供了新思路.

本文引用格式

王凯悦 , 许明诺 , 李博 , 伍广朋 . 双功能硫脲催化剂在“一锅法”制备多肽和环状碳酸酯反应中的应用[J]. 有机化学, 2024 , 44(10) : 3206 -3212 . DOI: 10.6023/cjoc202405031

Abstract

A series of bifunctional thiourea catalysts were designed and synthesized to catalyze the ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) for preparation of polypeptides. At the same time, the released carbon dioxide (CO2) during the reaction was fixed and converted into cyclic carbonates with industrial value. One-pot synthesis of well-defined polyesters and cyclic carbonates in high yields was successfully realized by this tandem process, which increased the atomic utilization. We disclosed that this tandem reaction was processed in the presence of propylene oxide (PO), which was not only judiciously added as an in situ activator for the efficient ROP of NCA, but also reacted with CO2 in the next step to form cyclic carbonates. By exploring the effect of different structures of bifunctional thiourea catalysts and reaction conditions on the reaction activity, the reaction efficiency could be highly improved. This tandem process offered unprecedented opportunities for the atom-efficient production of two relevant compounds.

参考文献

[1]
Deming, T. J. Prog. Polym. Sci. 2007, 32, 858.
[2]
Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330.
[3]
Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.
[4]
Deming, T. J. Adv. Drug Delivery Rev. 2002, 54, 1145.
[5]
Kataoka, K.; Harada, A.; Nagasaki, Y. Adv. Drug Delivery Rev. 2012, 64, 37.
[6]
Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucède, L.; Tella, P.; Tuchscherer, G.; Mutter, M. J. Am. Chem. Soc. 2005, 127, 11888.
[7]
Sang, P.; Shi, Y.; Huang, B.; Xue, S.; Odom, T.; Cai, J. Acc. Chem. Res. 2020, 53, 2425.
[8]
Song, Z.; Fu, H.; Wang, R.; Pacheco, L. A.; Wang, X.; Lin, Y. Chem. Soc. Rev. 2018, 47, 7401.
[9]
Tan, J.; Tay, J.; Hedrick, J.; Yang, Y. Y. Biomaterials 2020, 252, No. 120078.
[10]
Lv, S.; Wu, Y.; Cai, K.; He, H.; Li, Y.; Lan, M.; Chen, X.; Cheng, J.; Yin, L. J. Am. Chem. Soc. 2018, 140, 1235.
[11]
Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 15474.
[12]
Song, Z.; Tan, Z.; Cheng, J. Macromolecules 2019, 52, 8521.
[13]
Li, P.; Dong, C. M. ACS Macro Lett. 2017, 6, 292.
[14]
Tian. Z. Y.; Zhang. Z.; Wang. S.; Lu. H. Nat. Commun. 2021, 12, 5810
[15]
Chen, C.; Fu, H.; Baumgartner, R.; Song, Z. Y.; Lin, Y; Cheng, J. J. J. Am. Chem. Soc. 2019, 141, 8680.
[16]
Zhao, W.; Lv, Y.; Li, J.; Feng, Z. H.; Ni, Y. H.; Hadjichristidis, N. Nat. Commun. 2019, 10, 3590.
[17]
Wu, Y.; Chen, K.; Wu, X.; Liu, L.; Zhang, W.; Ding, Y.; Liu, S.; Zhou, M.; Shao, N.; Ji, Z.; Chen, J.; Zhu, M.; Liu, R. S. Angew. Chem., Int. Ed. 2021, 60, 26063.
[18]
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G. Chem. Soc. Rev. 2020, 49, 4737.
[19]
Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Prog. Polym. Sci. 2017, 74, 34.
[20]
Yan, J.; Liu, K.; Li, W.; Shi, H.; Zhang, A. Macromolecules 2016, 49, 510.
[21]
Zhang, Z. C.; Xiong, W.; Lu, H. Acta Chim. Sinica 2023, 81, 1113. (in Chinese)
[21]
(张正初, 熊炜, 吕华, 化学学报, 2023, 81, 1113.)
[22]
Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Chem. Rev. 2009, 109, 5528.
[23]
Deming, T. J. J. Am. Chem. Soc. 1997, 119, 2759.
[24]
Peng, Y. L.; Lai, S. L.; Lin, C. C. Macromolecules 2008, 41, 3455.
[25]
Peng, H.; Chen, W. L.; Kong, J.; Shen, Z. Q.; Ling, J. Chin. J. Polym. Sci. 2014, 32, 743.
[26]
Zhang, H. Y.; Nie, Y. Z.; Zhi, X. M.; Du, H. F.; Yang, J. Chem. Commun. 2017, 53, 5155.
[27]
Yuan, J. S.; Zhang, Y.; Li, Z. Z.; Wang, Y. Y.; Lu, H. ACS Macro Lett. 2018, 7, 892.
[28]
Wu, Y.; Zhang, D.; Ma, P.; Zhou, R.; Hua, L.; Liu, R. Nat. Commun. 2018, 9, No. 5297.
[29]
Lu, H.; Cheng, J. J. Am. Chem. Soc. 2007, 129, 1411.
[30]
Lv, W.; Wang, Y.; Li, M.; Wang, X.; Tao, Y. J. Am. Chem. Soc. 2022, 144, 23622.
[31]
Wang, K. Y.; Li, Z. Q.; Xu, M. N.; Li, B. Macromolecules 2023, 56, 5599.
[32]
Li, Z. Q.; Zhang, Y. Y.; Zheng, Y. J.; Li, B.; Wu, G. P. J. Org. Chem. 2022, 87, 3145.
[33]
Raman, S. K.; Brulé, E.; Tschan, M. J. L.; Thomas, C. M. Chem. Commun. 2014, 50, 13773.
[34]
Jia, F.; Chen, X.; Zheng, Y.; Qin, Y. S.; Tao, Y. H.; Wang, X. H. Chem. Commun. 2015, 51, 8504.
[35]
Tang, J.; Li, M.; Wang, X.; Tao, Y. H. Angew. Chem., Int. Ed. 2022, 61, e202115465.
文章导航

/