纳米花状Ir/MoS2催化剂用于CO2加氢高选择性制备甲酸盐
收稿日期: 2024-06-12
修回日期: 2024-07-29
网络出版日期: 2024-09-02
基金资助
国家自然科学基金(22033009); 国家自然科学基金(22293015); 国家自然科学基金(22072156); 国家自然科学基金(22073104); 国家自然科学基金(22121002); 国家重点研发计划(2022YFA1504904)
Nanoflower-Shaped Ir/MoS2 Catalyst for Highly Selective Production of Formate by CO2 Hydrogenation
Received date: 2024-06-12
Revised date: 2024-07-29
Online published: 2024-09-02
Supported by
National Science Foundation of China(22033009); National Science Foundation of China(22293015); National Science Foundation of China(22072156); National Science Foundation of China(22073104); National Science Foundation of China(22121002); National Key Research and Development Program of China(2022YFA1504904)
基于简单的水热合成法制备了一系列不同Ir负载量的纳米花状的X% Ir/MoS2催化剂, 探究其在CO2加氢反应中的催化活性. Ir/MoS2催化剂呈现出纳米花状的形貌, 直径大约为800 nm, 纳米花上的二维纳米片分布良好, 这有利于活性位点的充分暴露. Ir的掺杂有效地调整了催化剂的电子结构, 能够使MoS2局部结构发生相变. 在较低的反应压力下, 1% Ir/MoS2催化剂表现出了最高的甲酸盐选择性(98%)和活性(8.6 mmol•g–1•h–1), 但是过量Ir的负载会导致Ir纳米颗粒发生团聚, 降低了产物的选择性和活性. 1% Ir/MoS2催化剂还表现出优异的催化稳定性, 在重复使用3次后催化活性没有显著降低. 还通过控制实验对催化机理和反应的溶剂效应进行了研究和讨论. 本研究为开发高性能的CO2加氢合成甲酸/甲酸盐催化剂提供了一条新的途径.
何君 , 王红星 , 余成龙 , 张艳茹 , 王莹 , 王燕燕 , 张龙博 , 郭佳 , 钱庆利 , 韩布兴 . 纳米花状Ir/MoS2催化剂用于CO2加氢高选择性制备甲酸盐[J]. 有机化学, 2024 , 44(10) : 3223 -3232 . DOI: 10.6023/cjoc202406017
A series of nanoflower-shaped X% Ir/MoS2 catalysts with different Ir loadings were prepared based on a simple hydrothermal synthesis method and their catalytic activities in CO2 hydrogenation were investigated. The Ir/MoS2 catalyst has a nanoflower-like shape with a diameter of about 800 nm. The layers of two-dimensional nanosheets on the catalyst were well dispersed, which increased the exposure of the active sites. The doping of Ir could effectively tune the electronic structure of the catalyst, causing the local structure phase change of MoS2. Under low reaction pressure, the 1% Ir/MoS2 composite showed the highest formate selectivity (98%) and activity (8.6 mmol•g–1•h–1). The excessive Ir loading would lead to the agglomeration of Ir to form nanoparticles, which reduced the selectivity and activity of product. The 1% Ir/MoS2 catalyst also showed excellent catalytic stability, and the catalytic activity did not decrease obviously after being reused three times. Based on control experiments, the catalytic mechanism and solvent effect were also studied and discussed. This study provid es a new way for developing high-performance catalysts for CO2 hydrogenation to formate.
Key words: CO2 hydrogenation; formate; nanoflower; catalyst; Ir/MoS2
| [1] | He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2022, 134, e202112835. |
| [2] | Qian, Q.; Han, B. Nat. Sci. Rev. 2023, 10, nwad160. |
| [3] | Ma, Z.; Legrand, U.; Pahija, E.; Tavares, J.; Boffito, D. Ind. Eng. Chem. Res. 2021, 60, 803. |
| [4] | Wang, X. S.; Yang, X.; Chen, C. H.; Li, H. F.; Huang, Y. B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese) |
| [4] | (王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.) |
| [5] | Bulushev, D.; Ross, J. Catal. Rev. 2018, 60, 544. |
| [6] | Weilhard, A.; Qadir, M.; Sans, V.; Dupont, J. ACS Catal. 2018, 8, 1628. |
| [7] | álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.; Wezendonk, T.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804. |
| [8] | Ma, R.; Song, G. G.; Xi, Q. Z.; Yang, L.; Li, E. Q.; Duan, Z. Chin. J. Org. Chem. 2019, 39, 2196. (in Chinese) |
| [8] | (马蓉, 宋格格, 奚秋贞, 杨柳, 李二庆, 段征, 有机化学, 2019, 39, 2196.) |
| [9] | Deokar, G.; Vignaud, D.; Arenal, R.; Louette, P.; Colomer, J. Nanotechnology 2016, 27, 075604. |
| [10] | Wang, Z.; Kang, Y.; Hu, J.; Ji, Q.; Lu, Z.; Xu, G.; Qi, Y.; Zhang, M.; Zhang, W.; Huang, R.; Yu, L.; Tian, Z.; Deng, D. Angew. Chem., Int. Ed. 2023, 62, e202307086. |
| [11] | Bharath, G.; Rambabu, K.; Morajkar, P.; Jayaraman, R.; Theerthagiri, J.; Lee, S.; Choi, M.; Banat, F. J. Hazard. Mater. 2021, 409, 124980. |
| [12] | Mitchell, C.; Terranova, U.; Beale, A.; Jones, W.; Morgan, D.; Sankar, M.; Leeuw, N. Catal. Sci. Technol. 2021, 11, 779. |
| [13] | Fu, X.; Peres, L.; Esvan, J.; Amiens, C.; Philippot, K.; Yan, N. Nanoscale 2021, 13, 8931. |
| [14] | Schaub, T.; Paciello, R. A. Angew. Chem., Int. Ed. 2011, 32, 7278. |
| [15] | Huang, W. B.; Qiu, L. Q.; Ren, F. Y.; He, L. N. Chin. J. Org. Chem. 2021, 41, 3914. (in Chinese) |
| [15] | (黄文斌, 邱丽琪, 任方煜, 何良年, 有机化学, 2021, 41, 3914.) |
| [16] | Zhou, Y.; Liu, F.; Geng, S.; Yao, M.; Ma, J.; Cao, J. Mol. Catal. 2023, 547, 113288. |
| [17] | Wang, C.; Yu, L.; Yang, F.; Feng, L. J. Energy Chem. 2023, 87, 144. |
| [18] | Xie, Y.; Yu, X.; Li, X.; Long, X.; Chang, C.; Yang, Z. Chem. Eng. J. 2021, 424, 130337. |
| [19] | Chang, C.; Tsai, Z.; Lin, K.; Nian, Y. J. Photochem. Photobiol.,A 2023, 445, 115027. |
| [20] | Dong, H.; Gong, C.; Addou, R.; McDonnell, S.; Azcatl, A.; Qin, X.; Wang, W.; Hinkle, C.; Wallace, R. ACS Appl. Mater. Interfaces 2017, 9, 38977. |
| [21] | Hao, R.; Li, X.; Zhang, L.; You, H.; Fang, J. Nanoscale 2022, 14, 10449. |
| [22] | Wang, Y.; Xu, Y.; Cheng, C.; Zhang, B.; Yu, Y. Angew. Chem., Int. Ed. 2023, 136, 4. |
| [23] | Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; Xing, W. Nat. Commun. 2018, 9, 2120. |
| [24] | Wang, Z.; Zhang, L.; Ji, J.; Wu, Y.; Cai, Y.; Yao, X.; Gu, X.; Xiong, Y.; Wan, H.; Dong, L.; Chen, Y. Appl. Surf. Sci. 2022, 571, 151200. |
| [25] | Zhang, J.; Xu, X.; Yang, L.; Cheng, D.; Cao, D. Small Methods 2019, 3, 1900653. |
/
| 〈 |
|
〉 |