综述与进展

碳-碳不饱和键的催化不对称氢-膦(磷)官能化反应研究进展

  • 孙婷珈 ,
  • 孙国银 ,
  • 孙威 ,
  • 彭雪松 ,
  • 廖娟 ,
  • 游勇 ,
  • 袁伟成
展开
  • a 成都大学 高等研究院 成都 610106
    b 中国科学院成都有机化学研究所 手性药物国家工程研究中心 成都 610041

收稿日期: 2024-05-30

  修回日期: 2024-09-01

  网络出版日期: 2024-09-10

基金资助

国家自然科学基金(22171029); 四川省自然科学基金(2024NSFSC0281)

Advances in Catalytic Asymmetric Hydrogen-Phosphine/Phosphorus Functionalization of Unsaturated Carbon-Carbon Bonds

  • Tingjia Sun ,
  • Guoyin Sun ,
  • Wei Sun ,
  • Xuesong Peng ,
  • Juan Liao ,
  • Yong You ,
  • Weicheng Yuan
Expand
  • a Institute for Advanced Study, Chengdu University, Chengdu 610106
    b National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041
*Corresponding authors. E-mail:;

Received date: 2024-05-30

  Revised date: 2024-09-01

  Online published: 2024-09-10

Supported by

National Natural Science Foundation of China(22171029); Natural Science Foundation of Sichuan Province(2024NSFSC0281)

摘要

手性含膦(磷)化合物广泛应用于医药、农业、材料以及不对称催化合成等领域, 因此, 发展高效方法用于合成结构多样的手性含膦(磷)化合物引起许多化学工作者的关注. 在已发展的众多合成策略中, 碳-碳不饱和键的催化不对称氢-膦(磷)官能化反应是一类高效且原子经济的方法. 利用该方法可以高效地合成多种类型的手性含膦(磷)化合物, 包括含有碳手性、轴手性、磷手性以及同时含有碳手性和磷手性中心的含膦(磷)化合物. 主要介绍了近十年碳-碳不饱和键的催化不对称氢-膦(磷)官能化反应的研究进展, 从反应机理、合成应用、存在的挑战以及未来的发展等方面进行了阐释与讨论.

本文引用格式

孙婷珈 , 孙国银 , 孙威 , 彭雪松 , 廖娟 , 游勇 , 袁伟成 . 碳-碳不饱和键的催化不对称氢-膦(磷)官能化反应研究进展[J]. 有机化学, 2024 , 44(12) : 3647 -3677 . DOI: 10.6023/cjoc202405046

Abstract

Phosphine/Phosphorus-containing chiral compounds have a wide range of applications in pharmaceuticals industry, agriculture, functionalized materials, and asymmetric catalysis. Accordingly, the development of efficient methods for the synthesis of structurally diverse phosphine/phosphorus-containing chiral compounds has attracted the attention of chemists. Among the multitude of synthetic strategies developed, catalytic asymmetric hydrogen-phosphine/phosphorus functiona- lization of unsaturated carbon-carbon bonds stands out as a particularly efficient and atom economical method. Utilizing this strategy, a wide array of phosphine/phosphorus-containing chiral compounds can be synthesized with remarkable efficiency. The state-of-the-art studies on catalytic asymmetric hydrogen-phosphine/phosphorus functionalization of unsaturated carbon- carbon bonds in past decade are summarized. Mechanistic insights, synthetic applications, as well as challenges and opportunities of this field are elucidated and discussed.

参考文献

[1]
(a) Hecker S.-J.; Erion M.-D. J. Med. Chem. 2008, 51, 2328.
[1]
(b) Sheng X.-C.; Pyun H.-J.; Chaudhary K.; Wang J.; Doerffler E.; Fleury M.; Kim C.-U. Bioorg. Med. Chem. Lett. 2009, 19, 3453.
[1]
(c) Zhang Y.-P.; You Y.; Yin J.-Q.; Wang Z.-H.; Zhao J.-Q.; Li Q.; Yuan W.-C. Eur. J. Org. Chem. 2023, 26, e202300728.
[1]
(d) Wiemer A.-J. ACS Pharmacol. Transl. Sci. 2020, 3, 613.
[1]
(e) Jia X.; Schols D.; Meier C. J. Med. Chem. 2020, 63, 6003.
[1]
(f) Atherton F. R.; Hassall C. H.; Lambert R. W. J. Med. Chem. 1986, 29, 29.
[1]
(g) Lavielle G.; Hautefaye P.; Schaeffer C.; Boutin J. A.; Cudennec C. A.; Pierre A. J. Med. Chem. 1991, 34, 1998.
[2]
(a) Xu G.-Q.; Senanayake C.-H.; Tang W.-J. Acc. Chem. Res. 2019, 52, 1101.
[2]
(b) Li W.-B.; Zhang J.-L. Chem. Soc. Rev. 2016, 45, 1657.
[3]
(a) Yao Q.-L.; Wang A.-J.; Pu J.-Z.; Tang Y.-M. Chin. J. Org. Chem. 2014, 34, 292 (in Chinese).
[3]
(姚秋丽, 王安俊, 蒲家志, 唐瑜敏, 有机化学, 2014, 34, 292.)
[3]
(b) Li Z.; Duan W.-L. Chin. J. Org. Chem. 2016, 36, 1805 (in Chinese).
[3]
(李振, 段伟良, 有机化学, 2016, 36, 1805.)
[3]
((c) Zhu R.-Y.; Liao K.; Yu J.-S.; Zhou J. Acta Chim. Sinica 2020, 78, 193 (in Chinese).
[3]
(朱仁义, 廖奎, 余金生, 周剑, 化学学报, 2020, 78, 193.)
[3]
(d) Li H.; Yin L. Chin. J. Org. Chem. 2022, 42, 3183 (in Chinese).
[3]
(李晖, 殷亮, 有机化学, 2022, 42, 3183.)
[3]
(e) Luo C.; Yin Y.-L.; Jiang Z.-Y. Chin. J. Org. Chem. 2023, 43, 1963 (in Chinese).
[3]
(罗诚, 尹艳丽, 江智勇, 有机化学, 2023, 43, 1963.)
[3]
(f) Ding K.; Su B. Eur. J. Org. Chem. 2024, 27, e202301160.
[4]
(a) Feng J.-J.; Chen X.-F.; Shi M.; Duan W.-L. J. Am. Chem. Soc. 2010, 132, 5562.
[4]
(b) Huang Y.-H.; Pullarkat S. A.; Li Y.-X.; Leung P.-H. Chem. Commun. 2010, 46, 6950.
[5]
Wang C.-Y.; Huang K.-S.; Ye J.; Duan W.-L. J. Am. Chem. Soc. 2021, 143, 5685.
[6]
Hao X.-Q.; Zhao Y.-W.; Yang J.-J.; Niu J.-L.; Gong J.-F. Song M.-P. Organometallics 2014, 33, 1801.
[7]
Li C.; Bian Q.-L.; Xu S.; Duan W.-L. Org. Chem. Front. 2014, 1, 541.
[8]
Song Y.-C.; Dai G.-F.; Xiao F.-H.; Duan W.-L. Tetrahedron Lett. 2016, 57, 2990.
[9]
Chen Y.-R.; Feng J.-J.; Duan W.-L. Tetrahedron Lett. 2014, 55, 595.
[10]
Chew R. J.; Lu Y.-P.; Jia Y.-X.; Li B.-B.; Wong E. H. Y.; Goh R.; Li Y.-X.; Huang Y.-H.; Pullarkat S. A.; Leung P.-H. Chem.- Eur. J. 2014, 20, 14514.
[11]
Chew R. J.; Sepp K.; Li B.-B.; Li Y.-X.; Zhu P.-C.; Tan N. S.; Leung P.-H. Adv. Synth. Catal. 2015, 357, 3297.
[12]
Chew R. J.; Teo K. Y.; Huang Y.-H.; Li B.-B.; Li Y.-X.; Pullarkat S. A.; Leung P.-H. Chem. Commun. 2014, 50, 8768.
[13]
Xu Y.; Yang Z.-H.; Ding B.-Q.; Liu D.-L.; Liu Y.-G.; Sugiya M.; Imamoto T.; Zhang W.-B. Tetrahedron 2015, 71, 6832.
[14]
Yue W.-J.; Xiao J.-Z.; Zhang S.; Yin L. Angew. Chem., Int. Ed. 2020, 59, 7057.
[15]
Li Y.-B.; Tian H.; Yin L. J. Am. Chem. Soc. 2020, 142, 20098.
[16]
Pérez J. M.; Postolache R.; Reis M. C.; Sinnema E. G.; Vargová D.; Vries F.; Otten E.; Ge L.; Harutyunyan S. R. J. Am. Chem. Soc. 2021, 143, 20071.
[17]
Ge L.; Harutyunyan S. R. Chem. Sci. 2022, 13, 1307.
[18]
Postolache R.; Pérez J. M.; Reis M. C.; Ge L.; Sinnema E. G.; Harutyunyan S. R. Org. Lett. 2023, 25, 1611.
[19]
Wang C.-Y.; Yin P.; Dai Y.-H.; Ye J.; Duan W.-L. J. Organomet. Chem. 2023, 983, 122552.
[20]
Ji D.-Q.; Qi Z.-S.; Li X.-W. Org. Lett. 2023, 25, 5957.
[21]
Yang Q.-J.; Zhou J.; Wang J. Chem. Sci. 2023, 14, 4413.
[22]
Sinnema E. G.; Ramspoth T.-F.; Bouma R. H.; Ge L.; Harutyunyan S. R. Angew. Chem., Int. Ed. 2024, 63, e202316785.
[23]
Lu J.-Z.; Ye J.-X.; Duan W.-L. Chem. Commun. 2014, 50, 698.
[24]
Huang J.; Zhao M.-X.; Duan W.-L. Tetrahedron Lett. 2014, 55, 629.
[25]
Huang Y.-H.; Li Y.-X.; Leung P.-H.; Hayashi T. J. Am. Chem. Soc. 2014, 136, 4865.
[26]
Sadeer A.; Ong Y. J.; Kojima T.; Foo C. Q.; Li Y.-X.; Pullarkat S.-A.; Leung P.-H. Chem.-Asian J. 2018, 13, 2829.
[27]
Lu Z.-W.; Zhang H.-Y.; Yang Z.-P.; Ding N.; Meng L.; Wang J. ACS Catal. 2019, 9, 1457.
[28]
Zhang Y.-L.; Jiang Y.-X.; Li M.-L.; Huang Z.-X.; Wang J. Chem. Catal. 2022, 2, 3163.
[29]
Lin X.-B.; An K.; Zhuo Q.-D.; Nishiura M.-Y.; Cong X.-F.; Hou Z.-M. Angew. Chem., Int. Ed. 2023, 62, e202308488.
[30]
Zhang S.; Jiang N.; Xiao J.-Z.; Lin G.-Q.; Yin L. Angew. Chem., Int. Ed. 2023, 62, e202218798.
[31]
Zhang Y.-D.; Zhu S.-F. Acta Chim. Sinica 2023, 81, 777 (in Chinese).
[31]
(张艳东, 朱守非, 化学学报, 2023, 81, 777.)
[32]
Ji D.-Q.; Jing J.-R.; Wang Y.; Qi Z.-S.; Wang F.; Zhang X.-P.; Wang Y.; Li X.-W. Chem 2022, 8, 3346.
[33]
Wu Z.-H.; Cheng A.-Q.; Yuan M.; Zhao Y.-X.; Yang H.-L.; Wei L.-H.; Wang H.-Y.; Wang T.; Zhang Z.-T.; Duan W.-L. Angew. Chem., Int. Ed. 2021, 60, 27241.
[34]
Yu X.-H.; Lu L.-Q.; Zhang Z.-H.; Shi D.-Q.; Xiao W.-J. Org. Chem. Front. 2023, 10, 133.
[35]
Nie S.-Z.; Davison R.-T.; Dong V.-M. J. Am. Chem. Soc. 2018, 140, 16450.
[36]
Long J.; Li Y.-Q.; Zhao W.-N.; Yin G.-Y. Chem. Sci. 2022, 13, 1390.
[37]
(a) Li G.-L.; Huo X.-H.; Jiang X.-Y.; Zhang W.-B. Chem. Soc. Rev. 2020, 49, 2060.
[37]
(b) Blieck R.; Taillefer M.; Monnier F. Chem. Rev. 2020, 120, 13545.
[38]
Yang Z.-P.; Wang J. Angew. Chem., Int. Ed. 2021, 60, 27288.
[39]
Zhou J.; Meng L.; Lin S.-J.; Cai B.-H.; Wang J. Angew. Chem., Int. Ed. 2023, 62, e202303727.
[40]
Duan S.-Z.; Pan A.-L.; Du Y.; Zhu G.-L.; Tian X.; Zhang H.-B.; Walsh P. J.; Yang X.-D. ACS Catal. 2023, 13, 10887.
[41]
Dai Q.; Liu L.; Qian Y.-Y.; Li W.-B.; Zhang J.-L. Angew. Chem., Int. Ed. 2020, 59, 20645.
[42]
Xie X.-X.; Li S.-L.; Chen Q.-Y.; Guo H.; Yang J.-F.; Zhang J.-L. Org. Chem. Front. 2022, 9, 1589.
[43]
Yang Z.-P.; Gu X.-D.; Han L.-B.; Wang J. Chem. Sci. 2020, 11, 7451.
[44]
Liu X.-T.; Han X.-Y.; Wu Y.; Sun Y.-Y.; Gao L.; Huang Z.; Zhang Q.-W. J. Am. Chem. Soc. 2021, 143, 11309.
[45]
Wang W.-H.; Wu Y.; Qi P.-J.; Zhang Q.-W. ACS Catal. 2023, 13, 6994.
[46]
Zhang Y.-Q.; Han X.-Y.; Wu Y.; Qi P.-J.; Zhang Q.; Zhang Q.-W. Chem. Sci. 2022, 13, 4095.
[47]
(a) Ananikov V. P.; Makarov A. V.; Beletskaya I. P. Chem.-Eur. J. 2011, 17, 12623.
[47]
(b) Ananikov V. P.; Beletskaya I. P. Chem.-Asian J. 2011, 6, 1423.
[47]
(c) Khemchyan L. L.; Ivanova J. V.; Zalesskiy S. S.; Ananikov V. P.; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2014, 356, 771.
[48]
Cai B.-H.; Cui Y.; Zhou J.; Wang Y.-B.; Yang L.-M.; Tan B.; Wang J. Angew. Chem., Int. Ed. 2023, 62, e202215820.
[49]
Li Y.-B.; Li Y.; Yin L. Chin. Chem. Lett. 2024, 35, 109294.
[50]
Maiti R.; Yan J.-L.; Yang X.; Mondal B.; Xu J.; Chai H.-F.; Jin Z.-C.; Robin Chi Y.-G. Angew. Chem., Int. Ed. 2021, 60, 26616.
[51]
Gu X.; Yuan H.; Jiang J.; Wu Y.; Bai W.-J. Org. Lett. 2018, 20, 7229.
[52]
Chen Y.; Yu Z.-Y.; Jiang Z.-Y.; Tan J.-P.; Wu J.-H.; Lan Y.; Ren X.-Y.; Wang T.-L. ACS Catal. 2021, 11, 14168.
[53]
Jia Y.-Q.; Zhao J.-Q.; Wang Z.-H.; You Y.; Zhang Y.-P.; Jin X.; Zhou M.-Q.; Ge Z.-Z.; Yuan W.-C. Chem. Commun. 2022, 58, 12062.
[54]
Arai R.; Hirashima S.-I.; Nakano T.; Kawada M.; Akutsu H.; Nakashima K.; Miura T. J. Org. Chem. 2020, 85, 3872.
[55]
(a) Shi Y.-R.; Chen L.-R.; Gao Q.; Li J.-L.; Guo Y.-F.; Fan B.-M. Org. Lett. 2023, 25, 6495.
[55]
(b) Qian J.-Y.; Zhao H.-Y.; Gao Q.; Chen L.-R.; Shi Y.-R.; Li J.-L.; Guo Y.-F.; Fan B.-M. Org. Chem. Front. 2023, 10, 5672.
[55]
(c) Chen L.-R.; Wang G.-Y.; Nong X.-F.; Shao W.-D.; Li J.-L.; Guo Y.-F.; Fan B.-M. Chem.-Eur. J. 2024, e202401017.
[56]
Kondoh A.; Ishikawa S.; Terada M. Org. Biomol. Chem. 2020, 18, 7814.
[57]
Das S.; Hu Q.-P.; Kondoh A.; Terada M. Angew. Chem., Int. Ed. 2021, 60, 1417.
[58]
Wang B.-H.; Liu Y.-L.; Jiang C.-Y.; Cao Z.; Cao S.-S.; Zhao X.-W.; Ban X.; Yin Y.-L.; Jiang Z.-Y. Angew. Chem., Int. Ed. 2023, 62, e202216605.
[59]
Hirashima S.-I.; Hirota E.; Matsushima Y.; Noda N.; Nishimura Y.; Narushima T.; Nakashima K.; Miura T. Chem.-Asian J. 2022, 17, e202200989.
文章导航

/