综述与进展

过渡金属催化远程二烯的不对称迁移烯丙位碳氢键官能团化

  • 张经明 ,
  • 何智涛
展开
  • a 国科大杭州高等研究院 化学与材料科学学院 杭州 310024
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    c 宁波中科新材料创制中心 浙江宁波 315899

收稿日期: 2024-06-29

  修回日期: 2024-07-26

  网络出版日期: 2024-09-10

基金资助

国家自然科学基金(22071262); 国家自然科学基金(22371292); 上海市科学技术委员会(22ZR1475200); 宁波市自然科学基金(2023J036); 中国科学院战略先导研究计划(XDB0610000)

Transition Metal-Catalyzed Asymmetric Migratory Allylic C—H Functionalization of Remote Dienes

  • Jingming Zhang ,
  • Zhitao He
Expand
  • a School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c Ningbo Zhongke Creation Center of New Materials, Ningbo, Zhejiang 315899

Received date: 2024-06-29

  Revised date: 2024-07-26

  Online published: 2024-09-10

Supported by

National Natural Science Foundation of China(22071262); National Natural Science Foundation of China(22371292); Science and Technology Commission of Shanghai Municipality(22ZR1475200); Natural Science Foundation of Ningbo(2023J036); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0610000)

摘要

烯丙位碳氢键的不对称活化转化是具有重要价值和挑战性的一个研究方向. 不同于传统的直接脱氢策略, 过渡金属催化共轭二烯参与的迁移烯丙基取代反应是近年来发展起来的新的烯丙位碳氢键不对称活化转化的思路. 综述了该领域的发展历程和进展, 讨论了相关的机制过程, 并将其按照金属催化剂和产物类型进行了介绍.

本文引用格式

张经明 , 何智涛 . 过渡金属催化远程二烯的不对称迁移烯丙位碳氢键官能团化[J]. 有机化学, 2025 , 45(2) : 592 -601 . DOI: 10.6023/cjoc202406047

Abstract

Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.

参考文献

[1]
For selected reviews and work on typical transition metal-catalyzed asymmetric allylic substitution, see: (a) Trost, B. M.; Vranken Van, D. L. Chem. Rev. 1996, 96, 395.
[1]
(b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[1]
(c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
[1]
(d) Trost, B. M. Tetrahedron 2015, 71, 5708.
[1]
(e) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
[1]
(f) Mohammadkhani, L.; Heravi, M. M. Chem. Rec. 2021, 21, 29.
[1]
(g) Süsse, L.; Stoltz, B. M. Chem. Rev. 2021, 121, 4084.
[1]
(h) Wang, R.-X.; Zhao, Q.-R.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2023, 81, 431 (in Chinese).
[1]
(王瑞祥, 赵庆如, 顾庆, 游书力, 化学学报, 2023, 81, 431.)
[2]
For recent cases with C—C bond as leaving group, see: (a) Chen, Y.-W.; Qiu, Y.; Liu, Y.; Lin, G.-Q.; Hartwig, J. F. He, Z.-T. Nat. Synth. 2024, 3, 1011.
[2]
(b) Liu, Y.; Chen, Y.-W.; Yang, Y.-X.; Hartwig, J. F.; He, Z.-T. J. Am. Chem. Soc. 2024, 146, 29857.
[3]
For selected reviews, books and highlight on allylic C—H bond functionalization, see: (a) Jensen, T.; Fristrup, P. Chem.-Eur. J. 2009, 15, 9632.
[3]
(b) Liu, G.-S.; Wu, Y.-C. Activation, Springer, Berlin, Heidelberg, 2010, pp. 195-209.
[3]
(c) Liron, F.; Oble, J.; Lorion, M. M.; Poli, G. Eur. J. Org. Chem. 2014, 27, 5863.
[3]
(d) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219 (in Chinese).
[3]
(汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[3]
(e) Wang, R.-H.; Luan, Y.-X.; Ye, M.-C. Chin. J. Chem. 2019, 37, 720.
[3]
(f) Wang, P.-S.; Gong, L.-Z. Acc. Chem. Res. 2020, 53, 2841.
[3]
(g) Yue, H.-F.; Zhu, C.; Huang, L.; Dewanjib, A.; Rueping, M. Chem. Commun. 2022, 58, 171.
[4]
(a) Li, J.-Y.; Zhang, Z.-H.; Wu, L.-Q.; Zhang, W.; Chen, P.-H.; Lin, Z.-Y.; Liu, G.-S. Nature 2019, 574, 516.
[4]
(b) Cheung, K. P. S.; Fang, J.; Mukherjee, K.; Mihranyan, A.; Gevorgyan, V. Science 2022, 378, 1207.
[5]
For selected reviews on metal-walking functionalization, see: (a) Vilches-Herrera, M.; Domke, L.; B?rner, A. ACS Catal. 2014, 4, 1706.
[5]
(b) Larionov, E.; Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816.
[5]
(c) Vasseur, A.; Bruffaerts, J.; Marek, I. Nat. Chem. 2016, 8, 209.
[5]
(d) Sommer, H.; Juli-Hernndez, F.; Martin, R.; Marek, I. ACS Cent. Sci. 2018, 4, 153.
[5]
(e) Kochi, T.; Kanno, S.; Kakiuchi, F. Tetrahedron Lett. 2019, 60, 150938.
[5]
(f) Massad, I.; Marek, I. ACS Catal. 2020, 10, 5793.
[5]
(g) Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G.-Y. Angew. Chem., Int. Ed. 2020, 59, 7990.
[5]
(h) Janssen-Mller, D.; Sahoo, B.; Sun, S.-Z.; Martin, R. Isr. J. Chem. 2020, 60, 195.
[6]
For selected reviews on Pd-catalyzed enantioselective hydrofunctionalization of unsaturated bonds, see: (b) Haydl, A. M.; Breit, B.; Liang, T.; Krische, M. J. Angew. Chem., Int. Ed. 2017, 56, 11312.
[6]
(b) Li, G.; Huo, X.; Jiang, X.; Zhang, W. Chem. Soc. Rev. 2020, 49, 2060.
[6]
(c) Adamson, N. J.; Malcolmson, S. J. ACS Catal. 2020, 10, 1060.
[6]
(d) Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545.
[6]
(e) Flaget, A.; Zhang, C.; Mazet, C. ACS Catal. 2022, 12, 15638.
[6]
(f) Cera, G.; Maestri, G. ChemCatChem 2022, 14, e202200295.
[6]
(g) Ma, C.; Chen, Y.-W.; He, Z.-T. Sci. Sin. Chim. 2023, 53, 474.
[6]
(h) Wang, Y.-C.; Liu, J.-B.; He, Z.-T. Chin. J. Org. Chem. 2023, 43, 2614 (in Chinese).
[6]
(王玉超, 刘晋彪, 何智涛, 有机化学, 2023, 43, 2614.)
[7]
For selected work on Pd-catalyzed enantioselective hydrofunctionalization of unsaturated bonds, see: (a) L?ber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366.
[7]
(b) Leitner, A.; Larsen, J.; Steffens, C.; Hartwig, J. F. J. Org. Chem. 2004, 69, 7552.
[7]
(c) Zhou, H.; Wang, Y.-N.; Zhang, L.; Cai, M.; Luo, S.-Z. J. Am. Chem. Soc. 2017, 139, 3631.
[7]
(d) Adamson, N. J.; Hull, E.; Malcolmson, S. J. J. Am. Chem. Soc. 2017, 139, 7180.
[7]
(e) Adamson, N. J.; E. Wilbur, K. C.; Malcolmson, S. J. J. Am. Chem. Soc. 2018, 140, 2761.
[7]
(f) Nie, S.-Z.; Davison, R. T.; Dong, V. M. J. Am. Chem. Soc. 2018, 140, 16450.
[7]
(g) Park, S.; Malcolmson, S. J. ACS Catal. 2018, 8, 8468.
[7]
(h) Su, Y.-L.; Li, L.-L.; Zhou, X.-L.; Dai, Z.-Y.; Wang, P.-S.; Gong, L.-Z. Org. Lett. 2018, 20, 2403.
[7]
(i) Zhang, Q.-L.; Yu, H.-M.; Shen, L.-L.; Tang, T.-H.; Dong, D.-F.; Chai, W.-W.; Zi, W.-W. J. Am. Chem. Soc. 2019, 141, 14554.
[7]
(j) Park, S.; Adamson, N. J.; Malcolmson, S. J. Chem. Sci. 2019, 10, 5176.
[7]
(k) Zhang, Z.; Xiao, F.; Wu, H.-M.; Dong, X.-Q.; Wang, C.-J. Org. Lett. 2020, 22, 569.
[7]
(l) Onyeagusi, C. I.; Shao, X.; Malcolmson, S. J. Org. Lett. 2020, 22, 1681.
[7]
(m) Adamson, N. J.; Park, S.; Zhou, P.; Nguyen, A. L.; Malcolmson, S. J. Org. Lett. 2020, 22, 2032.
[7]
(n) Yang, H.; Xing, D. Chem. Commun. 2020, 56, 3721.
[7]
(o) Zhang, Q.; Dong, D.; Zi, W. J. Am. Chem. Soc. 2020, 142, 15860.
[7]
(p) Li, M.-M.; Cheng, L.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2021, 60, 2948.
[7]
(q) Yang, S.-Q.; Wang, Y.-F.; Zhao, W.-C.; Lin, G.-Q.; He, Z.-T. J. Am. Chem. Soc. 2021, 143, 7285.
[7]
(r) Wang, H.; Zhang, R.; Zhang, Q.; Zi, W. J. Am. Chem. Soc. 2021, 143, 10948.
[7]
(s) Jiu, A. Y.; Slocumb, H. S.; Yeung, C. S.; Yang, X.-H.; Dong, V. M. Angew. Chem., Int. Ed. 2021, 60, 19660.
[7]
(t) Zhang, Q.; Zhu, M.; Zi, W. Chem 2022, 8, 2784.
[7]
(u) Yang, S.-Q.; Han, A.-J.; Liu, Y.; Tang, X.-Y.; Lin, G.-Q.; He, Z.-T. J. Am. Chem. Soc. 2023, 145, 3915.
[7]
(v) Tang, M.-Q.; Yang, Z.-J.; He, Z.-T. Nat. Commun. 2023, 14, 6303.
[7]
(w) Han, A.-J.; Tan, Q.-T.; He, Z.-T. Org. Lett. 2024, 26, 89.
[7]
(x) Yang, Z.-J.; He, Z.-T. Synthesis 2024, 56, 3412.
[7]
(y) Zhang, J.-M.; Wang, Y.-C.; Chen, L.; Ma, C.; He, Z.-T. Chem.- Eur. J. 2024, 30, e202401350.
[7]
(z) Xie, B.-Y.; He, Z.-T. ACS Catal. 2024, 14, 9742.
[8]
Chen, Y.-W.; Liu, Y.; Lu, H.-Y.; Lin, G.-Q.; He, Z.-T. Nat. Commun. 2021, 12, 5626.
[9]
Liao, Q.-Y.; Ma, C.; Wang, Y.-C. Yang, S.-Q.; Ma, J.-S.; He, Z.-T. Chin. Chem. Lett. 2023, 34, 108371.
[10]
Wang, Y. -C, Xiao. Z.-X.; Wang, M.; Yang, S.-Q.; Liu, J.-B.; He, Z.-T. Angew. Chem., Int. Ed. 2023, 62, e202215568.
[11]
For selected examples on Pd-catalyzed asymmetric metal walking, see: (a) Werner, E.W.; Mei, T.-S.; Burckle, M.; Sigman, M. S. Science 2012, 338, 1455.
[11]
(b) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340.
[11]
(c) Larionov, E.; Lin, L.; Guénée, L.; Mazet, C. J. Am. Chem. Soc. 2014, 136, 16882.
[11]
(d) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
[11]
(e) Nelson, H. M.; Williams, B. D.; Miró, J.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3213.
[11]
(f) Lin, L.; Romano, C.; Mazet, C. J. Am. Chem. Soc. 2016, 138, 10344.
[11]
(g) Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 7587.
[11]
(h) Liu, J.; Yuan, Q.; Toste, F. D.; Sigman, M. S. Nat. Chem. 2019, 11, 710.
[11]
(i) Li, X.; Yang, T.; Li, J.; Li, X.; Chen, P.; Lin, Z.; Liu, G. Nat. Chem. 2023, 15, 862.
[12]
Chen, X.-X.; Luo, H.; Chen, Y.-W.; Liu, Y.; He, Z.-T. Angew. Chem., Int. Ed. 2023, 62, e202307628.
[13]
Miao, H.-Z.; Liu, Y.; Chen, Y.-W.; Lu, H.-Y.; Li, J.; Lin, G.-Q.; He, Z.-T. Synlett 2023, 34, 451.
[14]
Li, G.-L.; Huo, X.-H.; Jiang, X.-Y.; Zhang, W.-B. Chem. Soc. Rev. 2020, 49, 2060.
[15]
Bender, D. D.; Stakem, F. G.; Heck, R. F. J. Org. Chem. 1982, 47, 1278.
[16]
Larock, R. C.; Lu, Y.-D.; Bain, A. C. J. Org. Chem. 1991, 56, 4589.
[17]
(a) Larock, R. C.; Berrios-Pefia, N. G.; Fried, C. A.; Yum, E. K.; Tu, C.; Leong, W. J. Org. Chem. 1993, 58, 4510.
[17]
(b) Larock, R. C.; Wang, Yao.; Lu, Y.-D.; Russell, C. E. J. Org. Chem. 1994, 59, 8107.
[17]
(c) Wang, Y.; Dong, X.-Y.; Larock, R. C. J. Org. Chem. 2003, 68, 3091.
[18]
Pang, H.-L.; Wu, D.; Cong, H.-J.; Yin, G.-Y. ACS Catal. 2019, 9, 8555.
[19]
Pang, H.-L.; Wu, D.; Yin, G.-Y. Chin. J. Org. Chem. 2021, 41, 849 (in Chinese).
[19]
(庞海亮, 吴冬, 阴国印, 有机化学, 2021, 41, 849.)
[20]
Zhu, D.; Jiao, Z.; Chi, Y. R.; Goncalves, T. P.; Huang, K.-W.; Zhou, J. S. Angew. Chem., Int. Ed. 2020, 59, 5341.
[21]
Zhu, D.-Y.; Xu, W.-Q.; Pu, M.-P.; Wu, Y.-D.; Chi, Y. R.; Zhou, J. S. Org. Lett. 2021, 23, 7064.
[22]
Han, X.-J.; Larock, R. C. Synlett 1998, 7, 748.
[23]
Zhang, Y.; Shen, H.-C.; Li, Y.-Y.; Huang, Y.-S.; Han, Z.-Y.; Wu, X. Chem. Commun. 2019, 55, 3769.
[24]
Lux, M. C.; Boby, M. L.; Brooksc, J. L.; Tan, D. S. Chem. Commun. 2019, 55, 7013.
[25]
Yu, R.-R.; Rajasekar, S.; Fang, X.-J. Angew. Chem., Int. Ed. 2020, 59, 21436.
[26]
Cao, Y.-X.; Wodrich, M. D.; Cramer, D. Nat. Commun. 2023, 14, 7640.
[27]
Wang, X.; Miao, H.-Z.; Lin, G.-Q.; He, Z.-T. Angew. Chem., Int. Ed. 2023, 62, e202301556.
文章导航

/