研究论文

铈掺杂锆基金属-有机框架纳米颗粒的制备及其光催化二氧化碳环加成反应催化性能研究

  • 赵盈喆 ,
  • 张子瑄 ,
  • 张建玲 ,
  • 张仁杰 ,
  • 李美玲 ,
  • 滕钰楠 ,
  • 王昊翔
展开
  • a 中国科学院化学研究所 北京 100190
    b 中国科学院大学化学科学学院 北京 100049

收稿日期: 2024-05-29

  修回日期: 2024-08-24

  网络出版日期: 2024-09-19

基金资助

国家重点研发计划(2023YFA1507903); 国家自然科学基金(22033009); 国家自然科学基金(22121002); 国家自然科学基金(22238011)

Synthesis of Cerium Doped Zirconium-Based Metal-Organic Framework Nanoparticles and Their Photocatalytic Performance for Carbon Dioxide Cycloaddition

  • Yingzhe Zhao ,
  • Zixuan Zhang ,
  • Jianling Zhang ,
  • Renjie Zhang ,
  • Meiling Li ,
  • Yunan Teng ,
  • Haoxiang Wang
Expand
  • a Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049

Received date: 2024-05-29

  Revised date: 2024-08-24

  Online published: 2024-09-19

Supported by

National Key Research and Development Program of China(2023YFA1507903); National Natural Science Foundation of China(22033009); National Natural Science Foundation of China(22121002); National Natural Science Foundation of China(22238011)

摘要

在离子液体1-丁基-3-甲基咪唑醋酸盐中合成了铈掺杂的锆基NH2-UiO-66纳米颗粒, 采用X射线衍射、红外光谱、扫描电子显微镜和透射电子显微镜研究了所得材料的晶体结构和形貌, 采用X射线光电子能谱和能量色散X射线谱研究了所得材料中元素的价态和分布情况. 催化性能研究表明, 铈掺杂的NH2-UiO-66纳米颗粒在1,2-环氧丁烷与二氧化碳的环加成反应中催化效率比NH2-UiO-66得到显著提高. 光电性质研究表明, 该催化剂具有较强的光电流响应、较小的界面电荷转移阻抗、较窄的带隙和较低的平带电位. 该工作为光催化二氧化碳环加成反应高效催化剂的合成提供了一种新思路.

本文引用格式

赵盈喆 , 张子瑄 , 张建玲 , 张仁杰 , 李美玲 , 滕钰楠 , 王昊翔 . 铈掺杂锆基金属-有机框架纳米颗粒的制备及其光催化二氧化碳环加成反应催化性能研究[J]. 有机化学, 2024 , 44(10) : 3169 -3177 . DOI: 10.6023/cjoc202405044

Abstract

Cerium-doped zirconium-based NH2-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methyl- imidazolium acetate at room temperature. The crystal structure and morphology were studied using X-ray diffraction, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The valence state and distribution of elements in the obtained materials were examined using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. Catalytic performance studies show that the cerium-doped NH2-UiO-66 exhibits improved catalytic efficiency in the cycloaddition reaction of 1,2-butylene oxide and carbon dioxide than pure NH2-UiO-66. Studies on the photoelectric properties indicate that the cerium-doped NH2-UiO-66 catalyst possesses strong photocurrent response, low interfacial charge transfer resistance, narrow band gap, and low flat band potential. This work provides a new approach of synthesizing high-performance catalyst for photocatalytic CO2 cycloaddition.

参考文献

[1]
Shaw, W. J.; Kidder, M. K.; Bare, S. R.; Delferro, M.; Morris, J. R.; Toma, F. M.; Senanayake, S. D.; Autrey, T.; Biddinger, E. J.; Boettcher, S.; Bowden, M. E.; Britt, P. F.; Brown, R. C.; Bullock, R. M.; Chen, J. G.; Daniel, C.; Dorhout, P. K.; Efroymson, R. A.; Gaffney, K. J.; Gagliardi, L.; Harper, A. S.; Heldebrant, D. J.; Luca, O. R.; Lyubovsky, M.; Male, J. L.; Miller, D. J.; Prozorov, T.; Rallo, R.; Rana, R.; Rioux, R. M.; Sadow, A. D.; Schaidle, J. A.; Schulte, L. A.; Tarpeh, W. A.; Vlachos, D. G.; Vogt, B. D.; Weber, R. S.; Yang, J. Y.; Arenholz, E.; Helms, B. A.; Huang, W.; Jordahl, J. L.; Karakaya, C.; Kian, K.; Kothandaraman, J.; Lercher, J.; Liu, P.; Malhotra, D.; Mueller, K. T.; O’Brien, C. P.; Palomino, R. M.; Qi, L.; Rodriguez, J. A.; Rousseau, R.; Russell, J. C.; Sarazen, M. L.; Sholl, D. S.; Smith, E. A.; Stevens, M. B.; Surendranath, Y.; Tassone, C. J.; Tran, B.; Tumas, W.; Walton, K. S. Nat. Rev. Chem. 2024, 8, 376.
[2]
Zhong, K.; Sun, P.; Xu, H. Small 2024, 2310677.
[3]
Olowoyo, J. O.; Gharahshiran, V. S.; Zeng, Y.; Zhao, Y.; Zheng, Y. Chem. Soc. Rev. 2024, 53, 5428.
[4]
(a) Lin, S.; Chen, Y.; Li, H.; Wang, W.; Wang, Y.; Wu, M. iScience 2024, 27, 109656.
[4]
(b) Zhang, Z.; Yang, Z.; Liu, L.; Wang, Y.; Kawi, S. Adv. Energy Mater. 2024, 13, 2301852.
[5]
Zhu, H.; Shen, Q.; Yuan, Y.; Gao, H.; Zhou, S.; Yang, F. L.; Sun, L.; Wang, X.; Yi, J.; Han, X. Inorg. Chem. 2024, 63, 4078.
[6]
Li, L.; Liu, W.; Shi, T.; Shang, S.; Zhang, X.; Wang, H.; Tian, Z.; Chen, L.; Xie, Y. ACS Mater. Lett. 2023, 5, 1219.
[7]
Ge, B.; Ye, Y.; Yan, Y.; Luo, H.; Chen, Y.; Meng, X.; Song, X.; Liang, Z. Inorg. Chem. 2023, 62, 19288.
[8]
Li, Y.; Gao, F.; Xue, J.; Yang, G. P.; Wang, Y. Y. Cryst. Growth Des. 2023, 23, 3702.
[9]
Zhou, X.; Zhang, H.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Xing, D.; Liu, Y.; Huang, B. J. Colloid Interface Sci. 2024, 658, 805.
[10]
Siddig, L. A.; Alzard, R. H.; Nguyen, H. L.; G?b, C. R.; Alnaqbi, M. A.; Alzamly, A. ACS Omega 2022, 7, 9958.
[11]
Wang, X.; Li, J.; Kou, M.; Dou, W.; Bai, D.; Tang, X.; Tang, Y.; Liu, W. Inorg. Chem. 2023, 62, 19015.
[12]
Huang, Z. W.; Hu, K. Q.; Mei, L.; Wang, C. Z.; Chen, Y. M.; Wu, W. S.; Chai, Z. F.; Shi, W. Q. Inorg. Chem. 2021, 60, 651.
[13]
Shi, Q.; Chen, M. H.; Xiong, J.; Li, T.; Feng, Y. Q.; Zhang, B. Chem. Eng. J. 2024, 481, 148301.
[14]
Wu, D.; Lu, X.; Tang, Y.; Gao, F.; Yang, G.; Wang, Y. Y. ACS Appl. Nano Mater. 2023, 6, 6197.
[15]
Bakiro, M.; Ahmed, S. H.; Alzamly, A. J. Environ. Chem. Eng. 2020, 8, 104461.
[16]
Jiang, B.; Zhang, C.; Yang, N.; Zhou, Q.; Zhang, L.; Li, J.; Yang, W.; Yang, X.; Zhang, L. ACS Sustainable Chem. Eng. 2024, 12, 6584.
[17]
Wang, T.; Chen, F.; Jiang, L.; Li, J.; Chen, K.; Gao, J. Inorg. Chem. 2024, 63, 4224.
[18]
Bayer, U.; Werner, D.; Maichle-M?ssmer, C.; Anwander, R. Angew. Chem., Int. Ed. 2020, 59, 5830.
[19]
Li, S.; Li, H.; Wang, Y.; Liang, Q.; Zhou, M.; Guo, D.; Li, Z. Sep. Purif. Technol. 2024, 333, 125994.
[20]
Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H.; Yaghi, O. M. Angew. Chem., Int. Ed. 2015, 54, 11162.
[21]
Sang, X.; Zhang, J.; Xiang, J.; Cui, J.; Zheng, L.; Zhang, J.; Wu, Z.; Li, Z.; Mo, G.; Xu, Y.; Song, J.; Liu, C.; Tan, X.; Luo, T.; Zhang, B.; Han, B. Nat. Commun. 2017, 8, 175.
[22]
Hosseini, M. S.; Abbasi, A.; Masteri-Farahani, M. Appl. Surf. Sci. 2022, 604, 154514.
[23]
Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Rivaton, A.; Mailhot, B.; Gardette, J. L.; Bêche, E. Thin Solid Films 2006, 515, 662.
[24]
Chen, X.; Cai, Y.; Liang, R.; Tao, Y.; Wang, W.; Zhao, J.; Chen, X.; Li, H.; Zhang, D. Appl. Catal., B 2020, 267, 118687.
[25]
Xia, L.; Zhou, W.; Xu, Y.; Xia, Z.; Wang, X.; Yang, Q.; Xie, G.; Chen, S.; Gao, S. Chem. Eng. J. 2023, 451, 138747.
[26]
Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Surf. Interface Anal. 2008, 40, 264.
[27]
Payra, S.; Roy, S. J. Phys. Chem. C 2021, 125, 8497.
[28]
Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. Angew. Chem., Int. Ed. 2019, 58, 12175.
[29]
Zhou, P.; Zhou, X.; Song, Z.; Shao, D.; Wang, D. J. Solid State Chem. 2024, 331, 124500.
[30]
Jin, L.; Liu, H.; Xu, A.; Wu, Y.; Lu, J.; Liu, J.; Xie, S.; Yao, Y.; Dong, L.; Zhang, M.; Kai, S.; Fan, M. Microporous Mesoporous Mater. 2021, 317, 110997.
[31]
Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73.
[32]
Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys. 2020, 152, 224108.
[33]
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
[34]
Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057.
[35]
Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106.
[36]
Caldeweyher, E.; Bannwarth, C.; Grimme, S. J. Chem. Phys. 2017, 147, 034112.
[37]
Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. J. Chem. Phys. 2019, 150, 154122.
[38]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
[39]
Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.
文章导航

/