综述与进展

过渡金属催化联烯胺类化合物的碳氢化反应研究进展

  • 王君伟 ,
  • 薛皓 ,
  • 曲英瑜 ,
  • 姜若楠 ,
  • 闫法超 ,
  • 刘会
展开
  • a 山东理工大学化学化工学院 山东淄博 255049
    b 山东金城柯瑞化学有限公司 山东淄博 255035

收稿日期: 2024-06-07

  修回日期: 2024-08-20

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金(22078178)

Research Progress on Transition Metal Catalyzed Hydrocarbonation Reactions of N-Allenamines

  • Junwei Wang ,
  • Hao Xue ,
  • Yingyu Qu ,
  • Ruonan Jiang ,
  • Fachao Yan ,
  • Hui Liu
Expand
  • a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049
    b Shandong Jincheng Kerui Chemical Co., Ltd., Zibo, Shandong 255035

Received date: 2024-06-07

  Revised date: 2024-08-20

  Online published: 2024-09-19

Supported by

National Natural Science Foundation of China(22078178)

摘要

联烯胺作为一种富电子联烯类化合物, 由于其具有不同的反应位点和较高的反应活性, 近年来受到了广泛的关注. 联烯胺的双重反应性允许对氮原子的C(1)-C(3)位点进行区域和立体选择性的官能团化. 过渡金属催化联烯胺官能化, 选择性地获得近端或远端加合物, 在构建复杂的药物和天然产物骨架方面具有重要意义. 此文综述了近年来过渡金属催化联烯胺类化合物的碳氢化反应研究进展. 综述中的实例根据所使用的过渡金属类型进行分类, 此外, 还简要讨论了反应机理, 对于碳氢化反应的选择性调控和开发新反应类型至关重要.

本文引用格式

王君伟 , 薛皓 , 曲英瑜 , 姜若楠 , 闫法超 , 刘会 . 过渡金属催化联烯胺类化合物的碳氢化反应研究进展[J]. 有机化学, 2025 , 45(1) : 151 -167 . DOI: 10.6023/cjoc202406007

Abstract

As an electron-rich diene compound, N-allenamines have received wide spread attention in recent years due to its different reaction sites and high reactivity. The dual reactivity of N-allenamines enables functionalization at C(1)-C(3) sites of the nitrogen atom, facilitating region- and stereoselective modifications. The transition metal-catalyzed functionalization of N-allenamines, which selectively yields either proximal or distal adducts, plays a crucial role in the synthesis of complex frameworks in drugs and natural products. The examples in the review are classified based on the type of transition metal used. In addition, this review briefly discusses the reaction mechanism, which is crucial for selective regulation of hydrocarbonnation reactions and the development of new reaction types.

参考文献

[1]
Burton, B. S.; Pechman, H. V. Chem. Ber. 1887, 20, 145.
[2]
Ma, S. Chem. Rev. 2005, 105, 2829.
[3]
Ma, S. Acc. Chem. Res. 2009, 42, 1679.
[4]
Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
[5]
Nájera, C.; Beletskaya, I. P.; Yus, M. Chem. Soc. Rev. 2019, 48, 4515.
[6]
Zhan, G.; Du, W.; Chen, Y.-C. Chem. Soc. Rev. 2017, 46, 1675.
[7]
Hubert, A.; Viehe, H. J. Chem. Soc. C 1968, 228.
[8]
Wei, L-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773.
[9]
Hourtoule, M.; Miesch, L. Org. Biomol. Chem. 2022, 20, 9069.
[10]
Zhang, J.; Liang, W.; Yang, Y.; Yan, F.; Liu, H. Chin. J. Org. Chem. 2024, 44, 335 (in Chinese).
[10]
(张剑, 梁万洁, 杨艺, 闫法超, 刘会, 有机化学, 2024, 44, 335.)
[11]
Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545.
[12]
De Renzi, A.; Panunzi, A.; Saporito, A.; Vitagliano, A. J. Chem. Soc., Perkin Trans. 2 1983, 993.
[13]
Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D.; Chen, L.; Li, X.; Dong, Y.; Liu, H. Chem. Commun. 2019, 55, 4355.
[14]
(a) Dong, X.; Xu, L.-P.; Yang, Y.; Liu, Y.; Li, X.; Liu, Q.; Zheng, L.; Wang, F.; Liu, H. Org. Chem. Front. 2021, 8, 6009.
[14]
(b) Sun, X.; Dong, X.; Liu, H.; Liu, Y. Adv. Synth. Catal. 2021, 363, 1527.
[14]
(c) Dong, X.; Hou, Y.; Meng, F.; Liu, H-B.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088 (in Chinese).
[14]
(董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.)
[14]
(d) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111.
[15]
Du, X.; Zhao, H.; Li, X.; Zhang, L.; Dong, Y.; Wang, P.; Zhang, D.; Liu, Q.; Liu, H. J. Org. Chem. 2021, 86, 13276.
[16]
Liang, H.; Yan, F.; Dong, X.; Liu, Q.; Wei, X.; Liu, S.; Dong, Y.; Liu, H. Chem. Commun. 2017, 53, 3138.
[17]
Yan, F.; Liang, H.; Song, J.; Cui, J.; Liu, Q.; Liu, S.; Wang, P.; Dong, Y.; Liu, H. Org. Lett. 2017, 19, 86.
[18]
Yan, F.; Liang, H.; Ai, B.; Liang, W.; Jiao, L.; Yao, S.; Zhao, P.; Liu, Q.; Dong, Y.; Liu, H. Org. Biomol. Chem. 2019, 17, 2651.
[19]
Li, J.; Meng, L.; Du, X.; Liu, Q.; Xu, L.; Zhang, L.; Sun, F.; Li, X.; Zhang, D.; Xiao, X. Org. Chem. Front. 2020, 7, 3880.
[20]
Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T. Chem. Pharm. Bull. 2005, 53, 1502.
[21]
Husinec, S.; Petkovic, M.; Savic, V.; Simic, M. Synthesis 2012, 44, 399.
[22]
Blieck, R.; Taillefer, M.; Monnier, F. J. Org. Chem. 2019, 84, 11247.
[23]
Pradhan, T. R.; Lee, H. E.; Gonzalez‐Montiel, G. A.; Cheong, P. H. Y.; Park, J. K. Chem.-Eur. J. 2020, 26, 13826.
[24]
Liang, H.; Meng, L.; Chi, X.; Yao, S.; Chen, H.; Jiao, L.; Liu, Q.; Zhang, D.; Liu, H.; Dong, Y. Asian J. Org. Chem. 2018, 7, 1793.
[25]
Pradhan, T. R.; Kim, H. W.; Park, J. K. Angew. Chem., Int. Ed. 2018, 57, 9930.
[26]
Cao, C.; Yang, Y.; Li, X.; Liu, Y.; Liu, H.; Zhao, Z.; Chen, L. Eur. J. Org. Chem. 2021, 2021, 1538.
[27]
Chai, W.; Guo, B.; Zhang, Q.; Zi, W. Chem. Catal. 2022, 2, 1428.
[28]
Jang, D.-J.; Lee, S.; Lee, J.; Moon, D.; Ho Rhee, Y. Angew. Chem., Int. Ed. 2021, 60, 22166.
[29]
Zhu, X.; Li, R.; Yao, H.; Lin, A. Org. Lett. 2021, 23, 4630.
[30]
Hé douin, J.; Schneider, C.; Gillaizeau, I.; Hoarau, C. Org. Lett. 2018, 20, 6027.
[31]
Wang, D.-C.; Yang, T.-T.; Qu, G.-R.; Guo, H.-M. J. Org. Chem. 2022, 87, 14284.
[32]
Wang, J.; Li, L.; Chai, M.; Ding, S.; Li, J.; Shang, Y.; Zhao, H.; Li, D.; Zhu, Q. ACS Catal. 2021, 11, 12367.
[33]
Wang, D.-C.; Cheng, P.-P.; Yang, T.-T.; Wu, P.-P.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2021, 23, 7865.
[34]
(a) Shen, Q.-W.; Wen, W.; Guo, Q.-X. Org. Lett. 2023, 25, 3163.
[34]
(b) Guo, S.; Chen, J.; Yi, M.; Dong, L.; Lin, A.; Yao, H. Org. Chem. Front. 2021, 8, 1783.
[35]
Xue, Q.; Pu, Y.; Zhao, H.; Xie, X.; Zhang, H.; Wang, J.; Yan, L.; Shang, Y. Chem. Commun. 2024, 60, 3794.
[36]
Hajiloo Shayegan, M.; Li, Z.-Y.; Cui, X. Chem.-Eur. J. 2022, 28, e202103402.
[37]
Chen, C.; Tian, Z.; Liang, W.; Guo, J.; Xiao, P.; Wang, Z.; Zhang, L.; Liu, Q.; Liu, H. Asian J. Org. Chem. 2023, 12, e202300468.
[38]
Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054
[39]
For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to dienes, see: (a) Shibahara, F.; Bower, J. F.; Krische, M. J. Am. Chem. Soc. 2008, 130, 6338.
[39]
(b) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120.
[39]
(c) Smejkal, T.; Han, H.; Breit, B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 10366.
[40]
For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to enynes, see: Patman, R. L.; Williams, V. M.; Bower, J. F.; Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220.
[41]
For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to alkynes, see: (a) Patman, R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066.
[41]
(b) Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron 2009, 65, 5024.
[42]
For ruthenium-catalyzed transfer hydrogenative coupling of aldehydes to allenes, see: (a) Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705.
[42]
(b) Grant, C. D.; Krische, M. J. Org. Lett. 2009, 11, 4485.
[43]
Zbieg, J. R.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514.
[44]
Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821.
[45]
Kimber, M. C. Org. Lett. 2010, 12, 1128.
[46]
Fernández-Casado, J.; Nelson, R.; Mascareñas, J. L.; López, F. Chem. Commun. 2016, 52, 2909.
[47]
Singh, S.; Elsegood, M. R. J.; Kimber, M. C. Synlett 2012, 2012, 565.
[48]
An, J.; Lombardi, L.; Grilli, S.; Bandini, M. Org. Lett. 2018, 20, 7380.
[49]
Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem.-Eur. J. 2015, 21, 18445.
[50]
(a) Yu, Y.; Zhang, Z.; Voituriez, A.; Rabasso, N.; Frison, G.; Marinetti, A.; Guinchard, X. Chem. Commun. 2021, 57, 10779.
[50]
(b) Nicholls, L. D. M.; Wennemers, H. Chem.-Eur. J. 2021, 27, 17559.
[51]
Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem.-Eur. J. 2014, 20, 9875.
[52]
Rocchigiani, L.; Jia, M.; Bandini, M.; Macchioni, A. ACS Catal. 2015, 5, 3911.
[53]
Hu, J.; Pan, S.; Zhu, S.; Yu, P.; Xu, R.; Zhong, G.; Zeng, X. J. Org. Chem. 2020, 85, 7896.
[54]
González‐Gómez, Á.; Domínguez, G.; Pérez‐Castells, J. Eur. J. Org. Chem. 2009, 2009, 5057.
[55]
Ma, Z.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14, 5736.
[56]
Liu, G.; Yu, S.; Hu, W.; Qiu, H. Chem. Commun. 2019, 55, 12675.
[57]
Banerjee, S.; Senthilkumar, B.; Patil, N. T. Org. Lett. 2019, 21, 180.
[58]
Hill, A. W.; Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406.
[59]
Klake, R. K.; Gargaro, S. L.; Gentry, S. L.; Elele, S. O.; Sieber, J. D. Org. Lett. 2019, 21, 7992.
[60]
Ho, D.B.; Gargaro, S.; Klake, R. K.; Sieber, J. D. J. Org. Chem. 2022, 87, 2142.
[61]
Collinsa, S.; Sieber, J. D. Chem. Commun. 2023, 59, 10087.
[62]
Gargaro, S. L.; Klake, R. K.; Burns, K. L.; Elele, S. O.; Gentry, S. L.; Sieber, J. D. Org. Lett. 2019, 21, 9753.
[63]
Agrawal, T.; Martin, R. T.; Collins, S.; Wilhelm, Z.; Edwards, M. D.; Gutierrez, O.; Sieber, J. D. J. Org. Chem. 2021, 86, 5026.
[64]
Collins, S.; Sieber, J. D. Org. Lett. 2023, 25, 1425.
[65]
Klake, R. K.; Sieber, J. D. Org. Lett. 2023, 25, 4730.
[66]
Blieck, R.; Lemouzy, S.; van der Lee, A.; Taillefer, M.; Monnier, F. Org. Lett. 2021, 23, 9199.
[67]
Blieck, R.; Abed Ali Abdine, R.; Taillefer, M.; Monnier, F. Org. Lett. 2018, 20, 2232.
[68]
Abed Ali Abdine, R.; Pagès, L.; Taillefer, M.; Monnier, F. Eur. J. Org. Chem. 2020, 48, 7466.
[69]
Liu, Y.; De Nisi, A.; Cerveri, A.; Monari, M.; Bandini, M. Org. Lett. 2017, 19, 5034.
[70]
Liu, Y.; Cerveri, A.; De Nisi, A.; Monari, M.; Nieto Faza, O.; Lopez, C. S.; Bandini, M. Org. Chem. Front. 2018, 5, 3231.
[71]
Saito, N.; Sugimura, Y.; Sato, Y. Synlett 2014, 25, 736.
[72]
Du, M.; Sun, Y.; Zhao, J.; Hu, H.; Sun, L.; Li, Y. Chin. Chem. Lett. 2023, 34, 108269.
[73]
Gui, Y.-Y.; Chen, X.-W.; Mo, X.-Y.; Yue, J.-P.; Yuan, R.; Liu, Y.; Liao, L.-L.; Ye, J.-H.; Yu, D.-G. J. Am. Chem. Soc. 2024, 146, 2919.
[74]
Wang, Y. Sci. Focus 2023, 18, 1 (in Chinese).
[74]
(王野, 科学观察, 2023, 18, 1.)
[75]
Cui, J.; Song, J.; Liu, Q.; Liu, H.; Dong, Y. Chem. Asian J. 2018, 13, 482.
[76]
Song, J.; Liu, Q.; Liu, H.; Jiang, X. Eur. J. Org. Chem. 2018, 6, 696.
[77]
Shen, L.; Hsung, R. P. Org. Lett. 2005, 7, 775.
[78]
Mukherjee, R.; Basak, A. Synlett 2012, 23, 877.
[79]
Lu, N.; Zhang, Z.; Ma, N. Org. Lett. 2018, 20, 4318.
[80]
Yuan, X.; Tan, X.; Ding, N.; Liu, Y.; Li, X.; Zhao, Z. Org. Chem. Front. 2020, 7, 2725.
[81]
Koleoso, O. K.; Turner, M.; Plasser, F.; Kimber, M. C. Beilstein J. Org. Chem. 2020, 16, 1983.
[82]
Koike, T.; Akita, M. Org. Chem. Front. 2016, 3, 1345.
[83]
Courant, T.; Masson, G. Chem.-Eur. J. 2012, 18, 423.
[84]
Quintavalla, A.; Veronesi, R.; Speziali, L.; Martinelli, A.; Zaccheroni, N.; Mummolo, L.; Lombardo, M. Adv. Synth. Catal. 2022, 364, 362.
[85]
Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2017, 15, 7204.
[86]
Kondoh, A.; Ishikawa, S.; Aoki, T.; Terada, M. Chem. Commun. 2016, 52, 12513.
[87]
Zhang, J.; Wu, M.; Lu, W.; Wang, S.; Zhang, Y.; Cheng, C.; Zhu, G. J. Org. Chem. 2017, 82, 11134.
[88]
Brasholz, M.; Reissig, H.-U.; Zimmer, R. Acc. Chem. Res. 2009, 42, 45.
[89]
Alonso, J. M.; Almendros, P. Chem. Rev. 2021, 121, 4193.
文章导航

/