过渡金属催化联烯胺类化合物的碳氢化反应研究进展
收稿日期: 2024-06-07
修回日期: 2024-08-20
网络出版日期: 2024-09-19
基金资助
国家自然科学基金(22078178)
Research Progress on Transition Metal Catalyzed Hydrocarbonation Reactions of N-Allenamines
Received date: 2024-06-07
Revised date: 2024-08-20
Online published: 2024-09-19
Supported by
National Natural Science Foundation of China(22078178)
王君伟 , 薛皓 , 曲英瑜 , 姜若楠 , 闫法超 , 刘会 . 过渡金属催化联烯胺类化合物的碳氢化反应研究进展[J]. 有机化学, 2025 , 45(1) : 151 -167 . DOI: 10.6023/cjoc202406007
As an electron-rich diene compound, N-allenamines have received wide spread attention in recent years due to its different reaction sites and high reactivity. The dual reactivity of N-allenamines enables functionalization at C(1)-C(3) sites of the nitrogen atom, facilitating region- and stereoselective modifications. The transition metal-catalyzed functionalization of N-allenamines, which selectively yields either proximal or distal adducts, plays a crucial role in the synthesis of complex frameworks in drugs and natural products. The examples in the review are classified based on the type of transition metal used. In addition, this review briefly discusses the reaction mechanism, which is crucial for selective regulation of hydrocarbonnation reactions and the development of new reaction types.
Key words: N-allenamines; hydrocarbonation; functionalization; regioselectivity
| [1] | Burton, B. S.; Pechman, H. V. Chem. Ber. 1887, 20, 145. |
| [2] | Ma, S. Chem. Rev. 2005, 105, 2829. |
| [3] | Ma, S. Acc. Chem. Res. 2009, 42, 1679. |
| [4] | Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. |
| [5] | Nájera, C.; Beletskaya, I. P.; Yus, M. Chem. Soc. Rev. 2019, 48, 4515. |
| [6] | Zhan, G.; Du, W.; Chen, Y.-C. Chem. Soc. Rev. 2017, 46, 1675. |
| [7] | Hubert, A.; Viehe, H. J. Chem. Soc. C 1968, 228. |
| [8] | Wei, L-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773. |
| [9] | Hourtoule, M.; Miesch, L. Org. Biomol. Chem. 2022, 20, 9069. |
| [10] | Zhang, J.; Liang, W.; Yang, Y.; Yan, F.; Liu, H. Chin. J. Org. Chem. 2024, 44, 335 (in Chinese). |
| [10] | (张剑, 梁万洁, 杨艺, 闫法超, 刘会, 有机化学, 2024, 44, 335.) |
| [11] | Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545. |
| [12] | De Renzi, A.; Panunzi, A.; Saporito, A.; Vitagliano, A. J. Chem. Soc., Perkin Trans. 2 1983, 993. |
| [13] | Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D.; Chen, L.; Li, X.; Dong, Y.; Liu, H. Chem. Commun. 2019, 55, 4355. |
| [14] | (a) Dong, X.; Xu, L.-P.; Yang, Y.; Liu, Y.; Li, X.; Liu, Q.; Zheng, L.; Wang, F.; Liu, H. Org. Chem. Front. 2021, 8, 6009. |
| [14] | (b) Sun, X.; Dong, X.; Liu, H.; Liu, Y. Adv. Synth. Catal. 2021, 363, 1527. |
| [14] | (c) Dong, X.; Hou, Y.; Meng, F.; Liu, H-B.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088 (in Chinese). |
| [14] | (董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.) |
| [14] | (d) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111. |
| [15] | Du, X.; Zhao, H.; Li, X.; Zhang, L.; Dong, Y.; Wang, P.; Zhang, D.; Liu, Q.; Liu, H. J. Org. Chem. 2021, 86, 13276. |
| [16] | Liang, H.; Yan, F.; Dong, X.; Liu, Q.; Wei, X.; Liu, S.; Dong, Y.; Liu, H. Chem. Commun. 2017, 53, 3138. |
| [17] | Yan, F.; Liang, H.; Song, J.; Cui, J.; Liu, Q.; Liu, S.; Wang, P.; Dong, Y.; Liu, H. Org. Lett. 2017, 19, 86. |
| [18] | Yan, F.; Liang, H.; Ai, B.; Liang, W.; Jiao, L.; Yao, S.; Zhao, P.; Liu, Q.; Dong, Y.; Liu, H. Org. Biomol. Chem. 2019, 17, 2651. |
| [19] | Li, J.; Meng, L.; Du, X.; Liu, Q.; Xu, L.; Zhang, L.; Sun, F.; Li, X.; Zhang, D.; Xiao, X. Org. Chem. Front. 2020, 7, 3880. |
| [20] | Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T. Chem. Pharm. Bull. 2005, 53, 1502. |
| [21] | Husinec, S.; Petkovic, M.; Savic, V.; Simic, M. Synthesis 2012, 44, 399. |
| [22] | Blieck, R.; Taillefer, M.; Monnier, F. J. Org. Chem. 2019, 84, 11247. |
| [23] | Pradhan, T. R.; Lee, H. E.; Gonzalez‐Montiel, G. A.; Cheong, P. H. Y.; Park, J. K. Chem.-Eur. J. 2020, 26, 13826. |
| [24] | Liang, H.; Meng, L.; Chi, X.; Yao, S.; Chen, H.; Jiao, L.; Liu, Q.; Zhang, D.; Liu, H.; Dong, Y. Asian J. Org. Chem. 2018, 7, 1793. |
| [25] | Pradhan, T. R.; Kim, H. W.; Park, J. K. Angew. Chem., Int. Ed. 2018, 57, 9930. |
| [26] | Cao, C.; Yang, Y.; Li, X.; Liu, Y.; Liu, H.; Zhao, Z.; Chen, L. Eur. J. Org. Chem. 2021, 2021, 1538. |
| [27] | Chai, W.; Guo, B.; Zhang, Q.; Zi, W. Chem. Catal. 2022, 2, 1428. |
| [28] | Jang, D.-J.; Lee, S.; Lee, J.; Moon, D.; Ho Rhee, Y. Angew. Chem., Int. Ed. 2021, 60, 22166. |
| [29] | Zhu, X.; Li, R.; Yao, H.; Lin, A. Org. Lett. 2021, 23, 4630. |
| [30] | Hé douin, J.; Schneider, C.; Gillaizeau, I.; Hoarau, C. Org. Lett. 2018, 20, 6027. |
| [31] | Wang, D.-C.; Yang, T.-T.; Qu, G.-R.; Guo, H.-M. J. Org. Chem. 2022, 87, 14284. |
| [32] | Wang, J.; Li, L.; Chai, M.; Ding, S.; Li, J.; Shang, Y.; Zhao, H.; Li, D.; Zhu, Q. ACS Catal. 2021, 11, 12367. |
| [33] | Wang, D.-C.; Cheng, P.-P.; Yang, T.-T.; Wu, P.-P.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2021, 23, 7865. |
| [34] | (a) Shen, Q.-W.; Wen, W.; Guo, Q.-X. Org. Lett. 2023, 25, 3163. |
| [34] | (b) Guo, S.; Chen, J.; Yi, M.; Dong, L.; Lin, A.; Yao, H. Org. Chem. Front. 2021, 8, 1783. |
| [35] | Xue, Q.; Pu, Y.; Zhao, H.; Xie, X.; Zhang, H.; Wang, J.; Yan, L.; Shang, Y. Chem. Commun. 2024, 60, 3794. |
| [36] | Hajiloo Shayegan, M.; Li, Z.-Y.; Cui, X. Chem.-Eur. J. 2022, 28, e202103402. |
| [37] | Chen, C.; Tian, Z.; Liang, W.; Guo, J.; Xiao, P.; Wang, Z.; Zhang, L.; Liu, Q.; Liu, H. Asian J. Org. Chem. 2023, 12, e202300468. |
| [38] | Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054 |
| [39] | For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to dienes, see: (a) Shibahara, F.; Bower, J. F.; Krische, M. J. Am. Chem. Soc. 2008, 130, 6338. |
| [39] | (b) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120. |
| [39] | (c) Smejkal, T.; Han, H.; Breit, B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 10366. |
| [40] | For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to enynes, see: Patman, R. L.; Williams, V. M.; Bower, J. F.; Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220. |
| [41] | For ruthenium-catalyzed transfer hydrogenative coupling of alcohols to alkynes, see: (a) Patman, R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066. |
| [41] | (b) Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron 2009, 65, 5024. |
| [42] | For ruthenium-catalyzed transfer hydrogenative coupling of aldehydes to allenes, see: (a) Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705. |
| [42] | (b) Grant, C. D.; Krische, M. J. Org. Lett. 2009, 11, 4485. |
| [43] | Zbieg, J. R.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514. |
| [44] | Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821. |
| [45] | Kimber, M. C. Org. Lett. 2010, 12, 1128. |
| [46] | Fernández-Casado, J.; Nelson, R.; Mascareñas, J. L.; López, F. Chem. Commun. 2016, 52, 2909. |
| [47] | Singh, S.; Elsegood, M. R. J.; Kimber, M. C. Synlett 2012, 2012, 565. |
| [48] | An, J.; Lombardi, L.; Grilli, S.; Bandini, M. Org. Lett. 2018, 20, 7380. |
| [49] | Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem.-Eur. J. 2015, 21, 18445. |
| [50] | (a) Yu, Y.; Zhang, Z.; Voituriez, A.; Rabasso, N.; Frison, G.; Marinetti, A.; Guinchard, X. Chem. Commun. 2021, 57, 10779. |
| [50] | (b) Nicholls, L. D. M.; Wennemers, H. Chem.-Eur. J. 2021, 27, 17559. |
| [51] | Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem.-Eur. J. 2014, 20, 9875. |
| [52] | Rocchigiani, L.; Jia, M.; Bandini, M.; Macchioni, A. ACS Catal. 2015, 5, 3911. |
| [53] | Hu, J.; Pan, S.; Zhu, S.; Yu, P.; Xu, R.; Zhong, G.; Zeng, X. J. Org. Chem. 2020, 85, 7896. |
| [54] | González‐Gómez, Á.; Domínguez, G.; Pérez‐Castells, J. Eur. J. Org. Chem. 2009, 2009, 5057. |
| [55] | Ma, Z.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14, 5736. |
| [56] | Liu, G.; Yu, S.; Hu, W.; Qiu, H. Chem. Commun. 2019, 55, 12675. |
| [57] | Banerjee, S.; Senthilkumar, B.; Patil, N. T. Org. Lett. 2019, 21, 180. |
| [58] | Hill, A. W.; Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406. |
| [59] | Klake, R. K.; Gargaro, S. L.; Gentry, S. L.; Elele, S. O.; Sieber, J. D. Org. Lett. 2019, 21, 7992. |
| [60] | Ho, D.B.; Gargaro, S.; Klake, R. K.; Sieber, J. D. J. Org. Chem. 2022, 87, 2142. |
| [61] | Collinsa, S.; Sieber, J. D. Chem. Commun. 2023, 59, 10087. |
| [62] | Gargaro, S. L.; Klake, R. K.; Burns, K. L.; Elele, S. O.; Gentry, S. L.; Sieber, J. D. Org. Lett. 2019, 21, 9753. |
| [63] | Agrawal, T.; Martin, R. T.; Collins, S.; Wilhelm, Z.; Edwards, M. D.; Gutierrez, O.; Sieber, J. D. J. Org. Chem. 2021, 86, 5026. |
| [64] | Collins, S.; Sieber, J. D. Org. Lett. 2023, 25, 1425. |
| [65] | Klake, R. K.; Sieber, J. D. Org. Lett. 2023, 25, 4730. |
| [66] | Blieck, R.; Lemouzy, S.; van der Lee, A.; Taillefer, M.; Monnier, F. Org. Lett. 2021, 23, 9199. |
| [67] | Blieck, R.; Abed Ali Abdine, R.; Taillefer, M.; Monnier, F. Org. Lett. 2018, 20, 2232. |
| [68] | Abed Ali Abdine, R.; Pagès, L.; Taillefer, M.; Monnier, F. Eur. J. Org. Chem. 2020, 48, 7466. |
| [69] | Liu, Y.; De Nisi, A.; Cerveri, A.; Monari, M.; Bandini, M. Org. Lett. 2017, 19, 5034. |
| [70] | Liu, Y.; Cerveri, A.; De Nisi, A.; Monari, M.; Nieto Faza, O.; Lopez, C. S.; Bandini, M. Org. Chem. Front. 2018, 5, 3231. |
| [71] | Saito, N.; Sugimura, Y.; Sato, Y. Synlett 2014, 25, 736. |
| [72] | Du, M.; Sun, Y.; Zhao, J.; Hu, H.; Sun, L.; Li, Y. Chin. Chem. Lett. 2023, 34, 108269. |
| [73] | Gui, Y.-Y.; Chen, X.-W.; Mo, X.-Y.; Yue, J.-P.; Yuan, R.; Liu, Y.; Liao, L.-L.; Ye, J.-H.; Yu, D.-G. J. Am. Chem. Soc. 2024, 146, 2919. |
| [74] | Wang, Y. Sci. Focus 2023, 18, 1 (in Chinese). |
| [74] | (王野, 科学观察, 2023, 18, 1.) |
| [75] | Cui, J.; Song, J.; Liu, Q.; Liu, H.; Dong, Y. Chem. Asian J. 2018, 13, 482. |
| [76] | Song, J.; Liu, Q.; Liu, H.; Jiang, X. Eur. J. Org. Chem. 2018, 6, 696. |
| [77] | Shen, L.; Hsung, R. P. Org. Lett. 2005, 7, 775. |
| [78] | Mukherjee, R.; Basak, A. Synlett 2012, 23, 877. |
| [79] | Lu, N.; Zhang, Z.; Ma, N. Org. Lett. 2018, 20, 4318. |
| [80] | Yuan, X.; Tan, X.; Ding, N.; Liu, Y.; Li, X.; Zhao, Z. Org. Chem. Front. 2020, 7, 2725. |
| [81] | Koleoso, O. K.; Turner, M.; Plasser, F.; Kimber, M. C. Beilstein J. Org. Chem. 2020, 16, 1983. |
| [82] | Koike, T.; Akita, M. Org. Chem. Front. 2016, 3, 1345. |
| [83] | Courant, T.; Masson, G. Chem.-Eur. J. 2012, 18, 423. |
| [84] | Quintavalla, A.; Veronesi, R.; Speziali, L.; Martinelli, A.; Zaccheroni, N.; Mummolo, L.; Lombardo, M. Adv. Synth. Catal. 2022, 364, 362. |
| [85] | Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2017, 15, 7204. |
| [86] | Kondoh, A.; Ishikawa, S.; Aoki, T.; Terada, M. Chem. Commun. 2016, 52, 12513. |
| [87] | Zhang, J.; Wu, M.; Lu, W.; Wang, S.; Zhang, Y.; Cheng, C.; Zhu, G. J. Org. Chem. 2017, 82, 11134. |
| [88] | Brasholz, M.; Reissig, H.-U.; Zimmer, R. Acc. Chem. Res. 2009, 42, 45. |
| [89] | Alonso, J. M.; Almendros, P. Chem. Rev. 2021, 121, 4193. |
/
| 〈 |
|
〉 |