综述与进展

疏水型催化剂在有机合成反应中的应用

  • 徐晶 ,
  • 张娟 ,
  • 高文超 ,
  • 孟凡会 ,
  • 杨朋 ,
  • 常宏宏
展开
  • a 太原理工大学人工智能学院 太原 030024
    b 太原理工大学化学与化工学院 太原 030024
    c 太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室 太原 030024
    d 山东师范大学化学化工与材料科学学院 济南 250014
    e 山西天宏达安医药科技有限公司 山西晋中 030600

收稿日期: 2024-06-12

  修回日期: 2024-08-13

  网络出版日期: 2024-09-19

基金资助

太原理工大学省部共建煤基能源清洁高效利用国家重点实验室开放基金(SKL202102); 山西省基础研究计划(202303021211033); 山西省基础研究计划(20210302124123)

Application of Hydrophobic Catalysts in Organic Synthesis Reactions

  • Jing Xu ,
  • Juan Zhang ,
  • Wenchao Gao ,
  • Fanhui Meng ,
  • Peng Yang ,
  • Honghong Chang
Expand
  • a College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024
    b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024
    c State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024
    d College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014
    e Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong, Shanxi 030600

Received date: 2024-06-12

  Revised date: 2024-08-13

  Online published: 2024-09-19

Supported by

State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology(SKL202102); Fundamental Research Program of Shanxi Province(202303021211033); Fundamental Research Program of Shanxi Province(20210302124123)

摘要

在许多反应中通常不可避免地产生水或需要水, 水在反应中起着溶剂、反应物、副产物、催化剂或质子转移剂的作用, 在多相催化体系中可作为溶剂改善底物的亲水性, 进而促进反应的进行, 但在催化合成领域普遍认为水分子是一种破坏性因素, 会破坏金属活性位点, 导致催化剂性能下降甚至失活. 传统金属催化剂大多具有“水不稳定性”, 因此疏水催化剂或疏水微环境的构建及性能探究成为了研究热点. 以疏水催化剂为核心, 详细总结了以Pt、Pd、Fe、Co、Cu、Au、Ti、Rh等金属为活性位点设计并制备疏水催化剂的研究进展, 对疏水催化剂在氧化、还原、偶联及CO2转化等有机反应中的应用进行了归纳和分析, 阐释了针对特定反应体系构建具有适宜“亲疏水效应”催化剂, 并实现目标分子高效合成面临的挑战, 并对该领域未来的发展趋势进行了展望.

本文引用格式

徐晶 , 张娟 , 高文超 , 孟凡会 , 杨朋 , 常宏宏 . 疏水型催化剂在有机合成反应中的应用[J]. 有机化学, 2025 , 45(1) : 136 -150 . DOI: 10.6023/cjoc202406019

Abstract

Water is usually inevitably produced or needed in the reaction, and it plays the roles of solvent, reactant, by-product, catalyst or proton transfer agent in the reaction. It can be used as a solvent to improve the hydrophilicity of the substrate in multiphase catalytic systems, which can promote the reaction. But in the field of catalytic synthesis, it is widely recognized that water molecule is a destructive factor, which can destroy the active sites of metals, leading to the decrease of catalyst performance or even inactivation. Most of the traditional metal catalysts are “water-unstable”, so the construction and performance of hydrophobic catalysts or hydrophobic microenvironments have become a hot research topic. In this review, the research progress of designing and preparing hydrophobic catalysts using Pt, Pd, Fe, Co, Cu, Au, Ti, Rh and other metals as active sites is summarized in detail, and the organic applications of hydrophobic catalysts in oxidation, reduction, coupling and CO2 conversion are summarized and analyzed. It is also explained that the hydrophobic microenvironments with appropriate hydrophilic effect can be constructed for the specific reaction systems. The challenges of constructing catalysts with suitable “hydrophobic effect” for specific reaction systems and realizing efficient synthesis of target molecules are explained, and the future development trend of this field is also prospected.

参考文献

[1]
Roberts, M. W. Catal. Lett. 2000, 67, 1.
[2]
Rafati, A.; Tahvildari, K.; Nozari, M. Energy Sources, Part A 2019, 41, 1062.
[3]
Yamamoto, K.; Nameki, R.; Sogawa, H.; Takata, T. Tetrahedron Lett. 2020, 61, 151870.
[4]
Wang, H. L.; Yuan, H. K.; Wang, X. Z.; Zhao, J.; Wei, D. C.; Shi, F. Adv. Synth. Catal. 2020, 362, 2348.
[5]
Cao, Y. L.; Ding, L.; Qiu, Z. G.; Zhang, H. P. Catal. Commun. 2020, 143, 106048.
[6]
Papastavrou, A. T.; Kidonakis, M.; Stratakis, M.; Orfanopoulos, M. J. Org. Chem. 2020, 85, 13324.
[7]
Liu, N.; Qiao, N. N.; Liu, F. S.; Wang, S. H.; Liang, Y. J. Mol. Struct. 2020, 1218, 128537.
[8]
Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. ChemSusChem 2009, 2, 18.
[9]
Louloudi, A.; Papayannakos, N. Appl. Catal., A 2000, 204, 167.
[10]
Musa, S.; Fronton, S.; Vaccaro, L.; Gelman, D. Organometallics 2013, 32, 3069.
[11]
Landis, C. R. Science 2015, 347, 29.
[12]
Tang, L.; Guo, X. F.; Yang, Y.; Zha, Z. G.; Wang, Z. Y. Chem. Commun. 2014, 50, 6145.
[13]
Tang, L.; Yang, Y.; Wen, L.; Zhang, S.; Zha, Z.; Wang, Z. Y. Org. Chem. Front. 2015, 2, 114.
[14]
Davies, P. R. Top. Catal. 2016, 59, 671.
[15]
Wang, Y. H.; Gao, W. G.; Li, K. Z.; Zheng, Y. N.; Xie, Z. H.; Na, W.; Chen, J. G. G.; Wang, H. Chem 2020, 6, 419.
[16]
Wischert, R.; Laurent, P.; Coperet, C.; Delbecq, F.; Sautet, P. J. Am. Chem. Soc. 2012, 134, 14430.
[17]
Wolf, M.; Fischer, N.; Claeys, M. Nat. Catal. 2020, 3, 962.
[18]
Xu, Y. F.; Li, X. Y.; Gao, J. H.; Wang, J.; Ma, G. Y.; Wen, X. D.; Yang, Y.; Li, Y. W.; Ding, M. Y. Science 2021, 371, 610.
[19]
Li, X. S.; Wang, X.; Roy, K.; van Bokhoven, J. A.; Artiglia, L. ACS Catal. 2020, 10, 5783.
[20]
Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112, 19841.
[21]
Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; Mcgrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K.; Iwashita, N. Chem. Rev. 2007, 107, 3904.
[22]
Sun, Q.; Chen, M.; Aguila, B.; Nguyen, N.; Ma, S. Q. Faraday Discuss. 2017, 201, 317.
[23]
Augier, F.; Koudil, A.; Royon, L. A.; Muszynski, L.; Yanouri, Q. Chem. Eng. Sci. 2010, 65, 255.
[24]
Lin, J. D.; Bi, Q. Y.; Tao, L.; Jiang, T.; Liu, Y. M.; He, H. Y.; Cao, Y.; Wang, Y. D. ACS Catal. 2017, 7, 1720.
[25]
Liu, D. H.; He, H. L.; Wang, J. J.; Zhou, S. Y.; Zeng, T. W; Gao, X. Y.; Xiao, Y.; Yi, X. F.; Zheng, A. M.; Zhang, Y. B.; Li, Z. Green Chem. 2021, 23, 9974.
[26]
Camblor, M. A.; Corma, A.; Esteve, P.; Martinez, A.; Valencia, S. Chem. Commun. 1997, 8, 795.
[27]
Sun, Q.; Jin, Y. Y.; Zhu, L. F.; Wang, L.; Meng, X. J.; Xiao, F. S. Nano Today 2013, 8, 342.
[28]
Zhang, J.; Wang, L.; Liu, F. J.; Meng, X. J.; Mao, J. X.; Xiao, F. S. Catal. Today 2015, 242, 249.
[29]
Wang, L.; Sun, J.; Meng, X. J.; Zhang, W. P.; Zhang, J.; Pan, S. X.; Shen, Z.; Xiao, F. S. Chem. Commun. 2014, 50, 2012.
[30]
Wang, C. T.; Liu, L. J.; Li, H. J.; Wang, L.; Xiao, F. S. Matter 2023, 6, 2697.
[31]
Xing, Z.; Shi, K. G.; Parsons, Z. S.; Feng, X. X. ACS Catal. 2023. 13, 2780.
[32]
Inumaru, K.; Ishihara, T.; Kamiya, Y.; Okuhara, T.; Yamanaka, S. Angew. Chem., Int. Ed. 2007, 46, 7625.
[33]
Panchal, B.; Zhao, Q. J.; Liu, B. J.; Sun, Y. Z.; Zhao, C. L.; Bian, K.; Chia-Hung, H.; Wang, J. X. Mol. Catal. 2023, 548, 113458.
[34]
Zhang, Y.; Ni, C.; Shi, G.; Wang, J.; Zhang, M.; Li, W. Med. Chem. Res. 2015, 24, 1189.
[35]
Wang, S. S.; Wang, J. L.; Li, X. X.; Yang, M. D.; Wu, Y. L. Catalysts 2022, 12, 995.
[36]
Wan, K. T.; Davis, M. E. Nature 1994, 370, 449.
[37]
Omota, F.; Dimian, A. C.; Bliek, A. Appl. Catal., A 2005, 294, 121.
[38]
Makowski, P.; Cakan, R. D.; Antonietti, M.; Goettmann, F.; Titirici, M. M. Chem. Commun. 2008, 8, 999.
[39]
Zhang, F. W.; Chen, S.; Li, H.; Zhang, X. M.; Yang, H. Q. RSC Adv. 2015, 5, 102811.
[40]
Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Angew. Chem., Int. Ed. 2016, 128, 7505.
[41]
Wang, H. L.; Gao, Z. Q.; Wang, X. Z.; Wei, R. P.; Zhang, J. P.; Shi, F. Chem. Commun. 2019, 55, 8305.
[42]
Liu, W. G.; Liu, J. C.; Liu, X. L.; Zheng, H. N.; Liu, J. ACS Catal. 2022, 13, 530.
[43]
Lv, L.; Zhao, M.; Liu, Y. N.; He, Y. F.; Li, D. Q. Chin. J. Chem. Eng. 2023, 53, 232.
[44]
Chalmers, J. A.; Moon, H.; Ausman, S. F.; Chuang, C. H.; Scott, S. L. Top. Catal. 2023, 66, 1143.
[45]
Chen, X. Y.; Qian, P. P.; Zhang, T.; Xu, Z. L.; Fang, C. Z.; Xu, X. J.; Chen, W. Z.; Wu, P.; Shen, Y.; Li, S.; Wu, J. S.; Zheng, B.; Zhang, W. N.; Huo, F. W. Chem. Commun. 2018, 54, 3936.
[46]
Cao, Y. P.; Zhang, A. Q. Chin. J. Org. Chem. 2011, 31, 577 (in Chinese).
[46]
(曹云苹, 张爱清, 有机化学, 2011, 31, 577.)
[47]
Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Angew. Chem., Int. Ed. 2018, 57, 5708.
[48]
Heiman, B. D.; Dotan, A.; Dodiuk, H.; Kenig, S. Polymers 2021, 13, 539.
[49]
Van, C. T.; Underhill, D.; Veiga, R. M.; Sievers, C.; Medlin, J. W. Langmuir 2018, 34, 3619.
[50]
Porosoff, M. D.; Yan, B. H.; Chen, J. G. G. Energy Environ. Sci. 2016, 9, 62.
[51]
Ye, J. Y.; Liu, C. J.; Mei, D. H.; Ge, Q. F. J. Catal. 2014, 317, 44.
[52]
Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Angew. Chem., Int. Ed. 2019, 58, 14549.
[53]
Shi, S.; Wang, M.; Chen, C.; Gao, J.; Ma, H.; Ma, J. P.; Xu, J. Chem. Commun. 2013, 49, 9591.
[54]
Sun, Q.; Aguila, B.; Verma, G.; Liu, X. L.; Dai, Z. F.; Deng, F.; Meng, X. J.; Xiao, F. X.; Ma, S. Q. Chem 2016, 1, 628.
[55]
Han, B.; Zhao, L.; Song, Y. K.; Zhao, Z. R.; Yang, D. F.; Liu, R.; Liu, G. H. Catal. Sci. Technol. 2018, 8, 2920.
[56]
Sun, D. R.; Kim, D. P. ACS Appl. Mater. Interfaces 2020, 12, 20589.
[57]
Cui, Y. J.; Cheng, Y. H.; Yang, C. L.; Su, Y. S.; Yao, D. F.; Liufu, B. P.; Li, J. L.; Fang, Y. W.; Liu, S. Y.; Zhong, Z. Y.; Wang, X. M.; Song, Y. B.; Li, Z. ACS Sustainable Chem. Eng. 2023, 11, 11229.
[58]
Kamegawa, T.; Shimizu, Y.; Yamashita, H. Adv. Mater. 2012, 24, 3697.
[59]
Deng, Z. Y.; Wang, W.; Mao, L. H.; Wang, C. F.; Chen, S. J. Mater. Chem. A 2014, 2, 4178.
[60]
Ma, G. F.; Syzgantseva, O. A.; Huang, Y.; Stoian, D.; Zhang, J.; Yang, S. L.; Luo, W.; Jiang, M. Y.; Li, S. M.; Chen, C. J.; Syzgantseva, M. A.; Yan, S.; Chen, N. Y.; Peng, L.; Li, J.; Han, B. X. Nat. Commun. 2023, 14, 501.
[61]
Wu, J. G.; Saito, M.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 2001, 218, 235.
[62]
Tan, M. H.; Tian, S.; Zhang, T.; Wang, K. Z.; Xiao, L. W.; Liang, J. M.; Ma, Q. X.; Yang, G. H.; Tsubaki, N.; Tan, Y. S. ACS Catal. 2021, 11, 4633.
[63]
Fang, W.; Wang, C. T.; Liu, Z. Q.; Wang, L.; Liu, L.; Li, H. J.; Xu, S. D.; Zheng, A. M.; Qin, X. D.; Liu, L. J.; Xiao, F. S. Science 2022, 377, 406.
[64]
Zhang, J. X.; Mao, D. L.; Zhang, H.; Wu, D. F. Chem. Eng. J. 2023, 471, 144461.
[65]
Corma, A.; Domine, M.; Gaona, J. A.; Jorda, J. L.; Navarro, M. T.; Rey, F; Nemeth, L. T.; Rey, F.; Perez, P. J.; Tsuji, J.; McCullochd, B.; Nemeth, L. T. Chem. Commun. 1998, 20, 2211.
[66]
Sotelo, J. L.; Van Grieken, R.; Martos, C. Chem. Commun. 1999, 6, 549.
[67]
Sakamoto, T.; Pac, C. Tetrahedron Lett. 2000, 41, 10009.
[68]
Iwai, Y.; Gligorich, K. M.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47, 3219.
[69]
Shi, S.; Liu, M.; Zhao, L.; Wang, M.; Chen, C.; Gao, J.; Xu, J. Chem.-Asian J. 2017, 12, 2404.
[70]
Ebbach, C.; Senkovska, I.; Unmuussig, T.; Fischer, A.; Kaskel, S. ACS Appl. Mater. Interfaces 2019, 11, 20915.
[71]
Tian, J.; Wang, C. H.; Wu, J. W.; Sun, D. H.; Li, Q. B. Chem. Eng. J. 2023, 451, 138351.
[72]
Law, K. Y. J. Phys. Chem. Lett. 2014, 5, 686.
[73]
Xing, Z.; Hu, X.; Feng, X. F. ACS Energy Lett. 2021, 6, 1694.
[74]
Shi, K. G.; Parsons, Z. S.; Xiao, F. S. ACS Energy Lett. 2023, 8, 2919.
[75]
Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 7202.
[76]
Gounder, R.; Davis, M. E. J. Catal. 2013, 308, 176.
[77]
Zhang, Q.; Shu, X. Z.; Lucas, J. M.; Toste, F. D.; Somorjai, G. A.; Alivisatos, A. P. Nano Lett. 2014, 14, 379.
[78]
Zapata, P. A.; Huang, Y.; Gonzalez, B. M. A.; Resasco, D. E. J. Catal. 2013, 308, 82.
[79]
Zapata, P. A.; Faria, J.; Ruiz, M. P.; Jentoft, R. E.; Resasco, D. E. J. Am. Chem. Soc. 2012, 134, 8570.
[80]
Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y.; Sun, Z. C. Nano Res. 2022, 15, 3886.
[81]
Mobaraki, A.; Movassagh, B.; Karimi, B. Appl. Catal. A 2014, 472, 123.
[82]
Huang, Y. B.; Shen, M.; Wang, X. S.; Huang, P.; Chen, R. P.; Lin, Z. J.; Cao, R. J. Catal. 2016, 333, 1.
[83]
Sobhani, S.; Khakzad, F. Appl. Organomet. Chem. 2017, 31, e3877.
[84]
Petkova, D.; Borlinghaus, N.; Sharma, S.; Kaschel, J.; Lindner, T.; Klee, J.; Jolit, A.; Haller, V.; Heitz, S.; Britze, K.; Dietrich, J.; Braje, W. M.; Handa, S. ACS Sustainable Chem. Eng. 2020, 8, 12612.
[85]
Zhong, Y.; Yao, Q.; Zhang, P. X.; Li, H.; Deng, Q.; Zeng, Z. L.; Wang, J.; Deng, S. G. Ind. Eng. Chem. 2020, 59, 22068.
[86]
Yuan, Q.; Song, X. G.; Feng, S. Q.; Jiang, M.; Yan, L.; Li, J. W.; Ding, Y. J. Chem. Commun. 2021, 57, 472.
[87]
Oozeerally, R.; Burnett, D. L.; Chamberlain, T. W.; Kashtiban, R. J.; Huband, S.; Walton, R. I.; Degirmenci, V. ChemCatChem 2021, 13, 2517.
[88]
Tian, Y. M.; Silva, W.; Gschwind, R. M.; Konig, B. Science 2024, 383, 750.
[89]
Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Chem. Rev. 2015, 115, 4607.
[90]
Yuan, W. T.; Zhu, B. E.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H. S.; Zhang, Z.; Wagner, J. B.; Wang, Y, G.; Wang, Y. Science 2020, 367, 428.
[91]
Merte, L. R.; Peng, G. W.; Bechstein, R.; Rieboldt, F.; Farberow, C. A.; Grabow, L. C.; Kudernatsch, W.; Wendt, S.; Lægsgaard, E.; Mavrikakis, M.; Besenbacher, F. Science 2012, 336, 889.
[92]
Mou, T. Y.; Pillai, H. S.; Wang, S. W.; Wan, M. Y.; Han, X.; Schweitzer, N. M.; Che, F. L.; Xin, H. L. Nat. Catal. 2023, 6, 122.
[93]
Chandler, D. Nature 2002, 417, 491.
[94]
Chen, X. P.; Meng, C. X.; Li, M. N.; Chu, S. M.; Zhu, X. X.; Xu, K.; Liu, L. T.; Wang, T.; Zhang, F. H.; Li, F. Chin. J. Org. Chem. 2023, 43, 28007 (in Chinese).
[94]
(陈乡萍, 孟晨湘, 李梦娜, 楚尚敏, 朱欣欣, 许凯, 刘澜涛, 王涛, 张凤华, 李飞, 有机化学, 2023, 43, 28007.)
[95]
Cortes-Clerget, M.; Yu, J. L.; Kincaid, J. R. A.; Walde, P.; Gallou, F.; Lipshutz, B. H. Chem. Sci. 2021, 12, 4237.
[96]
Narayan, S.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.
[97]
Tang, L.; Zhao, X.; Zou, G.; Zhou, Y.; Yang, X. Asian J. Org. Chem. 2016, 5, 335.
[98]
Tang, L.; Wang, P.; Fan, Y.; Yang, X.; Wan, C.; Zha, Z. ChemCatChem 2016, 8, 3565.
[99]
Yuan, H. Y.; Yang, H. G.; Hu, P.; Wang, H. F. ACS Catal. 2021, 11, 6835.
[100]
Wang, D. S.; Han, Y. Z.; Tan, Y. S.; Tsubaki, N. Fuel Process. Technol. 2009, 90, 446.
[101]
Mullen, G. M.; Mullins, C. B. Science 2014, 345, 1564.
[102]
Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8, 4873.
[103]
Tsou, J.; Magnoux, P.; Guisnet, M.; Orfao, J. J. M.; Figueiredo, J. L. Appl. Catal., B 2005, 57, 117.
[104]
Jung, Y. S.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
[105]
Yu, H. M.; Ziegler, C.; Oszcipok, M.; Zobel, M.; Hebling, C. Electrochim. Acta 2006, 51, 1199.
[106]
Liu, D. H.; He, H. L.; Wang, J. J.; Zhou, S. Y.; Zeng, T.; Gao, X. Y.; Xiao, Y.; Yi, X. F.; Zheng, A. M.; Zhang, Y. B.; Li, Z. Green Chem. 2021, 23, 9974.
文章导航

/