基于碳氢键断裂的金属催化的内烯烃不对称氢芳基化进展
收稿日期: 2024-06-29
修回日期: 2024-09-09
网络出版日期: 2024-10-11
基金资助
国家自然科学基金(22371160)
Recent Progress in Metal-Catalyzed Asymmetric Hydroarylation of Internal Alkenes Through C—H Cleavage
Received date: 2024-06-29
Revised date: 2024-09-09
Online published: 2024-10-11
Supported by
National Natural Science Foundation of China(22371160)
林恩泽 , 李必杰 . 基于碳氢键断裂的金属催化的内烯烃不对称氢芳基化进展[J]. 有机化学, 2025 , 45(2) : 546 -558 . DOI: 10.6023/cjoc202406049
Abstract Catalytic asymmetric addition of aryl C—H bonds to alkenes is an effective method for constructing benzylic chiral centers, offering advantages such as readily available starting materials, high atom economy, and diverse product structures. The study of the addition of aryl C—H bonds to terminal alkenes began earlier and has made significant progress. In contrast, research on the asymmetric addition of aryl C—H bonds to internal alkenes has been relatively lagging behind. The recent advances in metal-catalyzed asymmetric addition of aryl C—H bonds to internal alkenes are reviewed.
| [1] | (a) Achar, T. K.; Maiti, S.; Jana, S.; Maiti, D. ACS Catal. 2020, 10, 13748. |
| [1] | (b) Dalton, T.; Faber, T.; Glorius, F. ACS Cent. Sci. 2021, 7, 245. |
| [1] | (c) Dutta, U.; Maiti, S.; Bhattacharya, T.; Maiti, D. Science 2021, 372, eabd5992. |
| [1] | (d) Lam, N. Y. S.; Wu, K.; Yu, J.-Q. Angew. Chem., Int. Ed. 2021, 60, 15767. |
| [1] | (e) Li, Y.; Yuan, B.; Sun, Z.; Zhang, W. Green Synth. Catal. 2021, 2, 267. |
| [1] | (f) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957. |
| [1] | (g) Zhang, J.; Lu, X.; Shen, C.; Xu, L.; Ding, L.; Zhong, G. Chem. Soc. Rev. 2021, 50, 3263. |
| [1] | (h) He, Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y.-G.; Yu, Z. Chem. Soc. Rev. 2022, 51, 2759. |
| [1] | (i) Sinha, S. K.; Guin, S.; Maiti, S.; Biswas, J. P.; Porey, S.; Maiti, D. Chem. Rev. 2022, 122, 5682. |
| [1] | (j) Docherty, J. H.; Lister, T. M.; McArthur, G.; Findlay, M. T.; Domingo-Legarda, P.; Kenyon, J.; Choudhary, S.; Larrosa, I. Chem. Rev. 2023, 123, 7692. |
| [2] | (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529. |
| [2] | (b) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. |
| [3] | Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728. |
| [4] | (a) Grélaud, S.; Cooper, P.; Feron, L. J.; Bower, J. F. J. Am. Chem. Soc. 2018, 140, 9351. |
| [4] | (b) Lee, P.-S.; Yoshikai, N. Org. Lett. 2015, 17, 22. |
| [4] | (c) Liu, Y.-H.; Xie, P.-P.; Liu, L.; Fan, J.; Zhang, Z.-Z.; Hong, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 19112. |
| [4] | (d) Loup, J.; Zell, D.; Oliveira, J. C. A.; Keil, H.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 14197. |
| [4] | (e) Pesciaioli, F.; Dhawa, U.; Oliveira, J. C. A.; Yin, R.; John, M.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 15425. |
| [4] | (f) Song, G.; O, W. W. N.; Hou, Z. J. Am. Chem. Soc. 2014, 136, 12209. |
| [5] | (a) Shen, D.; Zhang, W.-B.; Li, Z.; Shi, S.-L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 1125. |
| [5] | (b) Shibata, T.; Ryu, N.; Takano, H. Adv. Synth. Catal. 2015, 357, 1131. |
| [5] | (c) Diesel, J.; Finogenova, A. M.; Cramer, N. J. Am. Chem. Soc. 2018, 140, 4489. |
| [5] | (d) Wang, Y.-X.; Qi, S.-L.; Luan, Y.-X.; Han, X.-W.; Wang, S.; Chen, H.; Ye, M. J. Am. Chem. Soc. 2018, 140, 5360. |
| [5] | (e) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628. |
| [5] | (f) Harada, H.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772. |
| [6] | (a) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. J. Am. Chem. Soc. 2017, 139, 15580. |
| [6] | (b) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. J. Am. Chem. Soc. 2018, 140, 3542. |
| [7] | Aufdenblatten, R.; Diezi, S.; Togni, A. Monatsh. Chem. 2000, 131, 1345. |
| [8] | Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.-K.; Endo, K.; Shibata, T. J. Org. Chem. 2008, 693, 3939. |
| [9] | Shirai, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2015, 54, 9894. |
| [10] | Nagamoto, M.; Fukuda, J.-I.; Hatano, M.; Yorimitsu, H.; Nishimura, T. Org. Lett. 2017, 19, 5952. |
| [11] | Romero-Arenas, A.; Hornillos, V.; Iglesias-Sigüenza, J.; Fernández, R.; López-Serrano, J.; Ros, A.; Lassaletta, J. M. J. Am. Chem. Soc. 2020, 142, 2628. |
| [12] | Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2116. |
| [13] | Chen, M.; Montgomery, J. ACS Catal. 2022, 12, 11015. |
| [14] | Ebe, Y.; Nishimura, T. J. Am. Chem. Soc. 2015, 137, 5899. |
| [15] | Ebe, Y.; Onoda, M.; Nishimura, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2017, 56, 5607. |
| [16] | Zhang, M.; Hu, L.; Lang, Y.; Cao, Y.; Huang, G. J. Org. Chem. 2018, 83, 2937. |
| [17] | Hatano, M.; Ebe, Y.; Nishimura, T.; Yorimitsu, H. J. Am. Chem. Soc. 2016, 138, 4010. |
| [18] | Zhao, W.; Li, B.-J. J. Am. Chem. Soc. 2023, 145, 6861. |
| [19] | Shibata, T.; Michino, M.; Kurita, H.; Tahara, Y.-K.; Kanyiva, K. S. Chem.-Eur. J. 2017, 23, 88. |
| [20] | Shibata, T.; Kurita, H.; Onoda, S.; Kanyiva, K. S. Asian J. Org. Chem. 2018, 7, 1411. |
| [21] | Shibata, T.; Sasaki, M.; Kojima, M.; Ito, M. Org. Lett. 2021, 23, 9078. |
| [22] | Satake, S.; Kurihara, T.; Nishikawa, K.; Mochizuki, T.; Hatano, M.; Ishihara, K.; Yoshino, T.; Matsunaga, S. Nat. Catal. 2018, 1, 585. |
| [23] | Kurihara, T.; Kojima, M.; Yoshino, T.; Matsunaga, S. Asian J. Org. Chem. 2020, 9, 368. |
| [24] | Wang, J.; Chen, H.; Kong, L.; Wang, F.; Lan, Y.; Li, X. ACS Catal. 2021, 11, 9151. |
| [25] | Potter, T. J.; Kamber, D. N.; Mercado, B. Q.; Ellman, J. A. ACS Catal. 2017, 7, 150. |
| [26] | Yang, H.; Zhang, R.; Zhang, S.-Z.; Gu, Q.; You, S.-L. ACS Catal. 2023, 13, 8838. |
| [27] | Ma, J.-B.; Zhao, X.; Zhang, D.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 13643. |
| [28] | Wang, Z.-C.; Luo, X.; Zhang, J.-W.; Liu, C.-F.; Koh, M. J.; Shi, S.-L. Nat. Catal. 2023, 6, 1087. |
/
| 〈 |
|
〉 |