综述与进展

Wagner-Meerwein重排反应在天然产物全合成中的应用

  • 陈杰 ,
  • 李俊 ,
  • 龙先文 ,
  • 申海香 ,
  • 邓军
展开
  • a 南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    b 武威职业学院 现代农业学院 甘肃武威 733000

收稿日期: 2024-08-07

  修回日期: 2024-09-10

  网络出版日期: 2024-10-29

基金资助

国家自然科学基金(22188101); 国家自然科学基金(22222105); 国家自然科学基金(22301146); 国家自然科学基金(22371142); 南开大学有机新物质创造前沿科学中心(63181206); 中央高校基本科研业务费(23JCYBJC01410); 中国博士后基金(332608)

Recent Advances of Wagner-Meerwein Rearrangement in Natural Product Synthesis

  • Jie Chen ,
  • Jun Li ,
  • Xianwen Long ,
  • Haixiang Shen ,
  • Jun Deng
Expand
  • a State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
    b College of Advanced Agricultural Sciences, Wuwei Occupational College, Wuwei, Gansu 733000

Received date: 2024-08-07

  Revised date: 2024-09-10

  Online published: 2024-10-29

Supported by

National Natural Science Foundation of China(22188101); National Natural Science Foundation of China(22222105); National Natural Science Foundation of China(22301146); National Natural Science Foundation of China(22371142); Frontiers Science Center for New Organic Matter, Nankai University(63181206); Fundamental Research Funds for the Central Universities(23JCYBJC01410); China Postdoctoral Science Foundation(332608)

摘要

Wagner-Meerwein重排反应因其在分子内高效构建季碳手性中心和实现碳骨架重组的独特能力, 自发现以来, 被广泛应用于众多复杂分子的合成. 通过对天然产物生物合成途径的理性分析, 将Wagner-Meerwein重排反应巧妙地引入到合成设计中, 能够快速、高效地构建常规手段难以实现的环系结构, 尤其是包含多个连续季碳手性中心的多环天然产物. 近年来, Wagner-Meerwein重排反应在萜类和甾体类天然产物合成中的应用日益增多, 展现了其独特的合成优势. 主要综述了2019年以来Wagner-Meerwein重排反应在这些复杂天然产物合成中的最新应用进展, 突显其在构建带有季碳手性中心的环系所发挥的独特优势.

本文引用格式

陈杰 , 李俊 , 龙先文 , 申海香 , 邓军 . Wagner-Meerwein重排反应在天然产物全合成中的应用[J]. 有机化学, 2025 , 45(3) : 896 -912 . DOI: 10.6023/cjoc202408010

Abstract

The Wagner-Meerwein rearrangement reaction, renowned for its unique capability in efficiently constructing quaternary chiral centers and achieving carbon skeleton rearrangement within molecules, has been widely applied in the synthesis of numerous complex molecules since its discovery. By incorporating rational biosynthetic pathway analyses, the Wagner- Meerwein rearrangement can be ingeniously introduced into synthetic design to rapidly and efficiently construct ring systems that are challenging to achieve through conventional methods, particularly polycyclic natural products with multiple contiguous quaternary carbon stereocenters. In recent years, the application of the Wagner-Meerwein rearrangement in the synthesis of terpenoids and steroids has increased significantly, demonstrating its unique synthetic advantages. The latest applications of the Wagner-Meerwein rearrangement in the synthesis of these complex natural products since 2019 are primarily summarized, highlighting its distinct advantages in constructing ring systems with quaternary carbon chiral centers.

参考文献

[1]
(a) Hong, B.-C.; Corey, E. J. J. Am. Chem. Soc. 1994, 116, 3149.
[1]
(b) Waizumi, N.; Stankovic, A. R.; Rawal, V. H. J. Am. Chem. Soc. 2003, 125, 13022.
[1]
(c) Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813.
[1]
(d) Angeles, A. R.; Waters, S. P.; Danishefsky, S. M. J. Am. Chem. Soc. 2008, 130, 13765.
[1]
(e) Gong, J.-X.; Lin, G.; Sun, W.-B.; Li, C.-C.; Yang, Z. J. Am. Chem. Soc. 2010, 132, 16745.
[1]
(f) Jørgensen, L.; McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S. Science 2013, 341, 878.
[1]
(g) Cernijenko, A.; Risgaard, R.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 9425.
[2]
(a) Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Chem. Rev. 2011, 111, 7523.
[2]
(b) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
[2]
(c) Wang, S.-H.; Li, B.-S.; Tu, Y.-Q. Chem. Commun. 2014, 50, 2393.
[2]
(d) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Chem. Soc. Rev. 2017, 46, 2272.
[2]
(e) Wu, H.; Wang, Q.; Zhu, J.-P. Eur. J. Org. Chem. 2019, 10, 1964.
[2]
(f) Zhang, X.-M.; Li, B.-S.; Wang, S.-H.; Zhang, K.; Zhang, F.-M.; Tu, Y.-Q. Chem. Sci. 2021, 12, 9262.
[2]
(g) Delayre, B.; Wang, Q.; Zhu, J.-P. ACS Cent. Sci. 2021, 7, 559.
[2]
(h) Zhang, Z.-L.; Qian, X.; Gu, Y.-C.; Gui, J.-H. Nat. Prod. Rep. 2024, 41, 251.
[3]
(a) Tantillo, D. J. Nat. Prod. Rep. 2011, 28, 1035.
[3]
(b) Tantillo, D. J. Chem. Soc. Rev. 2010, 39, 2847.
[3]
(c) de la Torre, M. C.; Sierra, M. A. Angew. Chem., Int. Ed. 2004, 43, 160.
[3]
(d) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730.
[3]
(e) Wendt, K. U. Angew. Chem., Int. Ed. 2005, 44, 3966.
[3]
(f) Abe, I. Nat. Prod. Rep. 2007, 24, 1311.
[4]
(a) Birladeanu, L. J. Chem. Educ. 2000, 77, 858.
[4]
(b) Fittig, R. Liebigs Ann. Chem. 1860, 114, 54.
[4]
(c) Butlerov, A.-M. Liebigs Ann. Chem. 1874, 174, 125.
[4]
(d) Wagner, G.; Brickner, W. Chem. Ber. 1899, 32, 2302.
[4]
(e) Meerwein, H.; van Emster, K. Chem. Ber. 1922, 55, 2500.
[5]
Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Acad. Press, Burlington, 2005, p. 757.
[6]
Hanson, J. R. In Comprehensive Organic Synthesis, Vol. 3, Eds.: Trost, B. M.; Fleming, I., Oxford, Bighton, 1991, p. 705.
[7]
Zhao, Q.-Q.; Song, Q.-Y.; Jiang, K.; Li, G.-D.; Wei, W.-J.; Li, Y.; Gao, K. Org. Lett. 2015, 17, 2760.
[8]
Liang, X.-T.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2020, 142, 8116.
[9]
(a) Alekseychuk, M.; Adrian, S.; Heinze, R. C.; Heretsch, P. J. Am. Chem. Soc. 2022, 144, 11574.
[9]
(b) Long, X.-W.; Li, J.; Gao, F.; Wu, H.; Deng, J. J. Am. Chem. Soc. 2022, 144, 16292.
[10]
Pitzer, L.; Schwarz, J. L.; Glorius, F. Chem. Sci. 2019, 10, 8285.
[11]
Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem., Int. Ed. 2016, 55, 9974.
[12]
Chen, M. S.; White, M. C. Science 2007, 318, 783.
[13]
(a) Compain, P.; Vatèle, J.-M.; Goré, J. Synlett 1994, 943.
[13]
(b) Compain, P.; Goré, J.; Vatèle, J.-M. Tetrahedron 1996, 52, 10405.
[14]
Yang, D.; Wong, M.-K.; Wang, X.-C.; Tang, Y.-C. J. Am. Chem. Soc. 1998, 120, 6611.
[15]
(a) Xiao, W.-L.; Li, R.-T.; Huang, S.-X.; Pu, J.-X.; Sun, H.-D. Nat. Prod. Rep. 2008, 25, 871.
[15]
(b) Shi, Y.-M.; Xiao, W.-L.; Pu, J.-X.; Sun, H.-D. Nat. Prod. Rep. 2015, 32, 367.
[16]
Lei, C.; Huang, S.-X.; Chen, J.-J.; Yang, L.-B.; Xiao, W.-L.; Chang, Y.; Lu, Y.; Huang, H.; Pu, J.-X.; Sun, H.-D. J. Nat. Prod. 2008, 71, 1228.
[17]
Wang, Y.; Chen, B.; He, X.-B.; Gui, J.-H. J. Am. Chem. Soc. 2020, 142, 5007.
[18]
Mitsunobu, O. Synthesis 1981, 1.
[19]
Breslow, R.; Corcoran, R.-J.; Snider, B.-B.; Doll, R.-J.; Khanna, P.-L.; Kaleya, R. J. Am. Chem. Soc. 1977, 99, 905.
[20]
Barton, D. H. R.; Budhiraja, R. P.; McGhie, J. F. J. Chem. Soc. C 1969, 336.
[21]
Fan, Y.-Y.; Zhang, H.; Zhou, Y.; Liu, H.-B.; Tang, W.; Zhou, B.; Zuo, J.-P.; Yue, J.-M. J. Am. Chem. Soc. 2015, 137, 138.
[22]
(a) Xie, J.-X.; Liu, X.; Zhang, N.; Choi, S.; Dong, G.-B. J. Am. Chem. Soc. 2021, 143, 19311.
[22]
(b) Xie, J.-X.; Zheng, Z.; Liu, X.; Zhang, N.; Choi, S.; Dong, G.-B. J. Am. Chem. Soc. 2023, 145, 4828.
[23]
Sicinski, R. R.; Szczepek, W. J. Tetrahedron Lett. 1987, 28, 5729.
[24]
Shen, S.; Zhu, H.-J.; Chen, D.-W.; Liu, D.; Ofwegen, L.; Proksch, P.; Lin, W.-H. Tetrahedron Lett. 2012, 53, 5759.
[25]
He, C.; Xuan, J.; Rao, P.-R.; Xie, P.-P.; Hong, X.; Lin, X.-F.; Ding, H.-F. Angew. Chem., Int. Ed. 2019, 58, 5100.
[26]
Narasaka, K.; Soai, K.; Aikawa, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1976, 49, 779.
[27]
Bal, S. A.; Marfat, A.; Helquist, P. J. Org. Chem. 1982, 47, 5045.
[28]
Kozmin, S. A.; Janey, J. M.; Rawal, V. H. J. Org. Chem. 1999, 64, 3039.
[29]
Fujita, E.; Fujita, T.; Katayama, H.; Shibuya, M. Chem. Commun. 1967, 252.
[30]
Kong, L.; Su, F.; Yu, H.; Jiang, Z.; Lu, Y.-D.; Luo, T.-P. J. Am. Chem. Soc. 2019, 141, 20048.
[31]
Giese, S.; Kastrup, L.; Stiens, D.; West, F. G. Angew. Chem., Int. Ed. 2000, 39, 1970.
[32]
Li, C.-J.; Liu, H.; Wang, L.-Q.; Jin, M.-W.; Chen, S.-N.; Bao, G.-H.; Qin, G.-W. Acta Chim. Sinica 2003, 61, 1153. (in Chinese)
[32]
(李灿军, 刘慧, 陈绍农, 汪礼权, 金满文, 鲍官虎, 秦国伟, 化学学报, 2003, 61, 1153.)
[33]
Kong, L.; Yu, H.; Deng, M.-P.; Wu, F.-R.; Jiang, Z.; Luo, T.-P. J. Am. Chem. Soc. 2022, 144, 5268.
[34]
Lee, J. H. Tetrahedron 2020, 76, 131351.
[35]
Kong, L.; Yu, H.; Deng, M.-P.; Wu, F.-R.; Chen, S.-C.; Luo, T.-P. J. Org. Chem. 2023, 88, 6017.
[36]
Cheng, H.; Ma, T.-H.; Liu, X.; Jia, Y.-X. CCS Chem. 2024, 6, 2741.
[37]
Yang, Z.-N.; Rao, H.-J.-Z.; Yin, Y.-H.; Mu, S.; Jia, Z.-Q.; Ding, H.-F. Org. Lett. 2024, 26, 3524.
[38]
Wang, B.; Jiang, H.-Y.; Yang, J.; Li, J.; Yan, B.-C.; Chen, X.; Hu, K.; Li, X.-R.; Sun, H.-D.; Deng, J.; Puno, P.-T. Org. Lett. 2022, 24, 8104.
[39]
Toyomasu, T.; Kaneko, A.; Tokiwano, T.; Kanno, Y.; Kanno, Y.; Niida, R.; Miura, S.; Nishioka, T.; Ikeda, C.; Mitsuhashi, W.; Dairi, T.; Kawano, T.; Oikawa, H.; Kato, N.; Sassa, T. J. Org. Chem. 2009, 74, 1541.
[40]
Yin, J.-J.; Wang, Y.-P.; Xue, J.; Zhou, F.-F.; Shan, X.-Q.; Zhu, R.; Fang, K.; Shi, L.; Zhang, S.-Y.; Hou, S.-H.; Xia, W.-J.; Tu, Y.-Q. J. Am. Chem. Soc. 2023, 145, 21170.
[41]
Wang, Y.-P.; Fang, K.; Tu, Y.-Q.; Yin, J.-J.; Zhao, Q.; Ke, T. Nat. Commun. 2022, 13, 2335.
[42]
Gui, J.-H.; Wang, Y.; Tian, H.-L.; Gao, Y.-Q.; Tian, W.-S. Tetrahedron Lett. 2014, 55, 4233.
[43]
Ma, S.-G.; Li, M.; Lin, M.-B.; Li, L.; Liu, Y.-B.; Qu, J.; Li, Y.; Wang, X.-J.; Wang, R.-B.; Xu, S.; Hou, Q.; Yu, S.-S. Org. Lett. 2017, 19, 6160.
[44]
Burns, A. S.; Rychnovsky, S. D. J. Am. Chem. Soc. 2019, 141, 13295.
[45]
Etling, C.; Tedesco, G.; Di Marco, A.; Kalesse, M. J. Am. Chem. Soc. 2023, 145, 7021.
[46]
Tian, H.-Y.; Ruan, L.-J.; Yu, T.; Zheng, Q.-F.; Chen, N.-H.; Wu, R.-B.; Zhang, X.-Q.; Wang, L.; Jiang, R.-W.; Ye, W.-C. J. Nat. Prod. 2017, 80, 1182.
[47]
Wang, Y.; Tian, H.-L.; Gui, J.-H. J. Am. Chem. Soc. 2021, 143, 19576.
[48]
Chang, Y.-C.; Kuo, L.-M.; Su, J.-H.; Hwang, T.-L.; Kuo, Y.-H.; Lin, C.-S.; Wu, Y.-C.; Sheu, J.-H.; Sung, P.-J. Tetrahedron 2016, 72, 999.
[49]
Li, X.-H.; Zhang, Z.-L.; Fan, H.-F.; Miao, Y.-L.; Tian, H.-L.; Gu, Y.-C.; Gui, J.-H. J. Am. Chem. Soc. 2021, 143, 4886.
[50]
Crich, D.; Yao, Q. J. Org. Chem. 1996, 61, 3566.
[51]
Jiao, F.-R. Gu, B.-B.; Zhu, H.-R.; Zhang, Y.; Liu, K.-C.; Zhang, W.; Han, H.; Xu, S.-H.; Lin, H.-W. J. Org. Chem. 2021, 86, 10954.
[52]
Alekseychuk, M.; Heretsch, P. J. Am. Chem. Soc. 2022, 144, 21867.
[53]
Heinze, R. C.; Lentz, D.; Heretsch, P. Angew. Chem., Int. Ed. 2016, 55, 11656.
[54]
(a) Kaib, P. S. J.; Schreyer, L.; Lee, S.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2016, 55, 13200.
[54]
(b) Schreyer, L.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2019, 58, 777.
[54]
(c) Wakchaure, V. N.; DeSnoo, W.; Laconsay, C. J.; Leutzsch, M.; Tsuji, N.; Tantillo, D. J.; List, B. Nature 2024, 625, 287.
文章导航

/