研究论文

吲哚发散性氢化及其在(±)-α-和γ-Lycoranes的全合成中的应用

  • 韩守乐 ,
  • 娄明亮 ,
  • 刘晓磊 ,
  • 李根 ,
  • 王馨 ,
  • 吴青翠 ,
  • 齐湘兵
展开
  • a 清华大学生命科学学院 北京 100084
    b 清华大学生物医学交叉研究院 北京 100084
    c 北京生命科学研究所 北京 102206
    d 济南大学智能材料与工程研究院 济南 250022
共同第一作者

收稿日期: 2025-01-13

  修回日期: 2025-02-19

  网络出版日期: 2025-03-10

基金资助

国家自然科学基金(82225041)

Divergent Hydrogenation of Indoles and Its Applications in Total Syntheses of (±)-α- and γ-Lycoranes

  • Shoule Han ,
  • Mingliang Lou ,
  • Xiaolei Liu ,
  • Gen Li ,
  • Xin Wang ,
  • Qingcui Wu ,
  • Xiangbing Qi
Expand
  • a School of Life Sciences, Tsinghua University, Beijing 100084
    b Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084
    c National Institute of Biological Sciences (NIBS), Beijing 102206
    d Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022
(The authors contributed equally to this work).

Received date: 2025-01-13

  Revised date: 2025-02-19

  Online published: 2025-03-10

Supported by

National Natural Science Foundation of China(82225041)

摘要

氢化吲哚结构广泛存在于药物、天然产物、材料和农药分子中, 然而高效构建氢化吲哚的合成方法较少. 此文报道了一种通过在温和条件下氢化取代吲哚构建氢化吲哚结构的方法. 该方法用廉价钯/碳作为催化剂, 在氢气(101 kPa)条件下, 室温或60 ℃即可实现. 通过调节反应溶剂、反应温度和催化剂用量, 化学选择性地实现了取代吲哚发散性地氢化为不同饱和程度的含氮杂环结构, 如二氢吲哚、四氢吲哚、六氢吲哚和全氢化吲哚等. 使用该方法实现了(±)-α-和γ-lycoranes的3步发散性全合成, 证明了该方法在含有氢化吲哚结构的天然产物全合成中的高效性.

本文引用格式

韩守乐 , 娄明亮 , 刘晓磊 , 李根 , 王馨 , 吴青翠 , 齐湘兵 . 吲哚发散性氢化及其在(±)-α-和γ-Lycoranes的全合成中的应用[J]. 有机化学, 2025 , 45(3) : 913 -924 . DOI: 10.6023/cjoc202501010

Abstract

Hydroindoles are highly enriched in a variety of medicines, natural products, materials, and agrochemicals, however rapid and efficient access of this type of structure is still formidable. Herein, the construction of hydroindoles via hydrogenation of substituted indoles under atmospheric pressure of H2 at relatively low temperatures utilizing Pd/C as the catalyst is reported. And the controlled divergent hydrogenation of substituted indoles to dihydroindoles, tetrahydroindoles, hexahydroindoles, or octahydroindoles could be achieved by careful manipulation of reaction parameters, including reaction solvents, catalyst loading, and temperature. The efficiency of this method was demonstrated by the divergent syntheses of (±)-α- and γ-lycoranes in a three-step synthetic route.

参考文献

[1]
Luo, R. S.; Weng, J.; Ai, H. B.; Lu, G.; Chan, A. S. C. Adv. Synth. Catal. 2009, 351, 2449.
[2]
Hurst, M.; Jarvis, B. Drugs 2001, 61, 867.
[3]
(a) Faulkner, A.; Bower, J. F. Angew. Chem., Int. Ed. 2012, 51, 1675.
[3]
(b) Sofack-Kreutzer, J.; Martin, N.; Renaudat, A.; Jazzar, R.; Baudoin, O. Angew. Chem., Int. Ed. 2012, 51, 10399.
[3]
(c) Diethelm, S.; Schindler, C. S.; Carreira, E. M. Chem. Eur. J. 2014, 20, 6071.
[3]
(d) Feng, M.; Jiang, X. Chem. Commun. 2014, 50, 9690.
[3]
(e) Han, Y.; Zheng, B.; Peng, Y. Adv. Synth. Catal. 2015, 357, 1136.
[3]
(f) Gan, P.; Smith, M. W.; Braffman, N. R.; Snyder, S. A. Angew. Chem., Int. Ed. 2016, 55, 3625.
[3]
(g) MacLeod, B. L.; Pienkos, J. A.; Wilson, K. B.; Sabat, M.; Myers, W. H.; Harman, W. D. Organometallics 2016, 35, 370.
[3]
(h) Kalaitzakis, D.; Triantafyllakis, M.; Ioannou, G. I.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2017, 56, 4020.
[3]
(i) Yang, H.; Hou, S.; Tao, C.; Liu, Z.; Wang, C.; Cheng, B.; Li, Y.; Zhai, H. Chem. Eur. J. 2017, 23, 12930.
[3]
(j) Zhao, Q.-S.; Xu, G.-Q.; Xu, J.-T.; Wang, Z.-Y.; Xu, P.-F. Chem. Commun. 2020, 56, 2206.
[3]
(k) Wang, F.; Xu, X.-H.; Yan, Y.-T.; Zhang, J.-Y.; Bai, W.-J.; Chen, J.-W.; Yang, Y. Org. Lett. 2023, 25, 6853.
[4]
(a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2011, 112, 2557.
[4]
(b) Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Angew. Chem., Int. Ed. 2019, 58, 10460.
[4]
(c) Kim, A. N.; Stoltz, B. M. ACS Catal. 2020, 10, 13834.
[4]
(d) Lückemeier, L.; Pierau, M.; Glorius, F. Chem. Soc. Rev. 2023, 52, 4996.
[5]
(a) Xu, L.; Zhang, C.; He, Y.; Tan, L.; Ma, D. Angew. Chem., Int. Ed. 2015, 55, 321.
[5]
(b) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8734.
[5]
(c) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
[5]
(d) Yang, Y.; Gao, P.; Zhao, Y.; Shi, Z. Angew. Chem., Int. Ed. 2017, 57, 3966.
[5]
(e) Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2018, 58, 1504.
[6]
(a) Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614.
[6]
(b) Kuwano, R. K.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.; Ito, Y. Org. Lett. 2004, 6, 2213.
[6]
(c) Kuwano, R.; Kashiwabara, M. Org. Lett. 2006, 8, 2653.
[6]
(d) Baeza, A.; Pfaltz, A. Chem. Eur. J. 2010, 16, 2036.
[6]
(e) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909.
[6]
(f) Li, C.; Chen, J.; Fu, G.; Liu, D.; Liu, Y.; Zhang, W. Tetrahedron 2013, 69, 6839.
[6]
(g) Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. J. Am. Chem. Soc. 2014, 136, 7688.
[6]
(h) Núñez-Rico, J. L.; Fernández-Pérez, H.; Vidal-Ferran, A. Green Chem. 2014, 16, 1153.
[6]
(i) Yang, Z.; Chen, F.; He, Y.; Yang, N.; Fan, Q. H. Angew. Chem., Int. Ed. 2016, 55, 13863.
[6]
(j) Touge, T.; Arai, T. J. Am. Chem. Soc. 2016, 138, 11299.
[6]
(k) Wen, J.; Fan, X.; Tan, R.; Chien, H.-C.; Zhou, Q.; Chung, L. W.; Zhang, X. Org. Lett. 2018, 20, 2143.
[6]
(l) Ge, Y.; Wang, Z.; Han, Z.; Ding, K. Chem. Eur. J. 2020, 26, 15482.
[6]
(m) Liu, G.; Zheng, L.; Tian, K.; Wang, H.; Wa Chung, L.; Zhang, X.; Dong, X.-Q. CCS Chem. 2023, 5, 1398.
[7]
(a) Clarisse, D.; Fenet, B.; Fache, F. Org. Biomol. Chem. 2012, 10, 6587.
[7]
(b) Wollenburg, M.; Moock, D.; Glorius, F. Angew. Chem., Int. Ed. 2018, 57, 6549.
[7]
(c) Ling, L.; He, Y.; Zhang, X.; Luo, M.; Zeng, X. Angew. Chem., Int. Ed. 2019, 58, 6554.
[7]
(d) Wagener, T.; Pierau, M.; Heusler, A.; Glorius, F. Adv. Synth. Catal. 2022, 364, 3366.
[7]
(e) Zhang, F.; Sasmal, H. S.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2023, 145, 15695.
[8]
(a) Aminzai, M. T.; Azizi, N.; Nural, Y.; Yabalak, E. Monatsh. Chem.-Chem. Mon. 2024, 155, 115.
[8]
(b) Luo, C.; Wu, C.; Wang, X.; Han, Z.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2024, 146, 35043.
[8]
(c) Williams, S.; Qi, L.; Cox, R. J.; Kumar, P.; Xiao, J. Org. Biomol. Chem. 2024, 22, 1010.
[8]
(d) Luckemeier, L.; Pierau, M.; Glorius, F. Chem. Soc. Rev. 2023, 52, 4996.
[8]
(e) Yang, Z.-Y.; Luo, H.; Zhang, M.; Wang, X.-C. ACS Catal. 2021, 11, 10824.
[8]
(f) Wagener, T.; Lückemeier, L.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2021, 60, 6425.
[8]
(g) Zhang, X.; Ling, L.; Luo, M.; Zeng, X. Angew. Chem., Int. Ed. 2019, 58, 16785.
[8]
(h) Chen, F.; Li, W.; Sahoo, B.; Kreyenschulte, C.; Agostini, G.; Lund, H.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2018, 130, 14696.
[8]
(i) Cai, X.-F.; Huang, W.-X.; Chen, Z.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
[9]
Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G. M.; McDermott, M. S. J.; Conklin, D.; Gilmore, C. D.; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.; Grünanger, C. U.; Allan, K. M.; Virgil, S. C.; Slamon, D. J.; Stoltz, B. M. Science 2018, 363, 270.
[10]
(a) Liu, X.; Lou, M.; Bai, S.; Sun, G.; Qi, X. J. Org. Chem. 2022, 87, 5199.
[10]
(b) Han, S.; Lou, M.; Qi, X. Synlett 2023, 35, 586.
[10]
(c) Lou, M.; Liu, X.; Han, S.; Bai, S.; Qi, X. Chem. Commun. 2024, 60, 3842.
[11]
Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Nat. Rev. Chem. 2017, 1, 1.
[12]
McNulty, J.; Nair, J. J.; Little, J. R. L.; Brennan, J. D.; Bastida, J. Bioorg. Med. Chem. Lett. 2010, 20, 5290.
[13]
Hao, B.; Shen, S.-F.; Zhao, Q.-J. Molecules 2013, 18, 2458.
[14]
(a) Liu, X.-S.; Jiang, J.; Jiao, X.-Y.; Wu, Y.-E.; Lin, J.-J.; Cai, Y.-M. Cancer Lett. 2009, 274, 16.
[14]
(b) Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.; Cimmino, A.; Le Calvé, B.; Wauthoz, N.; Mégalizzi, V.; Gras, T.; Bruyère, C.; Dubois, J.; Mathieu, V.; Kornienko, A.; Kiss, R.; Evidente, A. J. Med. Chem. 2009, 52, 6244.
[14]
(c) Wang, P.; Yuan, H.-H.; Zhang, X.; Li, Y.-P.; Shang, L.-Q.; Yin, Z. Molecules 2014, 19, 2469.
[15]
(a) Xiao, J.; Zhou, G. H.; Zhou, A. X.; Ji, C. B. Chem. Biodiversity 2022, 19, e202200410.
[15]
(b) Bautista, D. D.; Vilchis Reyes, M. A.; Blé González, E. A.; Bugarin, A. Eur. J. Org. Chem. 2023, 26, e202300404.
[15]
(c) Yoshizaki, H.; Satoh, H.; Sato, Y.; Nukui, S.; Shibasaki, M.; Mori, M. J. Org. Chem. 1995, 60, 2016.
[15]
(d) Ikeda, M.; Ohtani, S.; Sato, T.; Ishibashi, H. Synthesis 1998, 1998, 1803.
[15]
(e) Banwell, M. G.; Harvey, J. E.; Hockless, D. C. R. J. Org. Chem. 2000, 65, 4241.
[15]
(f) Dong, L.; Xu, Y.-J.; Cun, L.-F.; Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2005, 7, 4285.
[15]
(g) Hong, B. C.; Nimje, R. Y.; Wu, M. F.; Sadani, A. A. Eur. J. Org. Chem. 2008, 2008, 1449.
[15]
(h) El Bialy, S. A. A. Nat. Prod. Res. 2008, 22, 1176.
[15]
(i) Wang, Y.; Luo, Y.-C.; Zhang, H.-B.; Xu, P.-F. Org. Biomol. Chem. 2012, 10, 8211.
[15]
(j) Li, G.; Xie, J. H.; Hou, J.; Zhu, S. F.; Zhou, Q. L. Adv. Synth. Catal. 2013, 355, 1597.
[15]
(k) Rana, N. K.; Huang, H.; Zhao, J. C. G. Angew. Chem., Int. Ed. 2014, 53, 7619.
[15]
(l) Sun, Z.; Zhou, M.; Li, X.; Meng, X.; Peng, F.; Zhang, H.; Shao, Z. Chem. Eur. J. 2014, 20, 6112.
[15]
(m) Meng, X.-L.; Liu, T.; Sun, Z.-W.; Wang, J.-C.; Peng, F.-Z.; Shao, Z.-H. Org. Lett. 2014, 16, 3044.
[15]
(n) Nishimura, K.; Fukuyama, N.; Yasuhara, T.; Yamashita, M.; Sumiyoshi, T.; Yamamoto, Y.; Yamada, K.-i.; Tomioka, K. Tetrahedron 2015, 71, 7222.
[15]
(o) Chen, Y. J.; Cai, S. L.; Wang, C. C.; Cheng, J. D.; Kramer, S.; Sun, X. W. Chem. Asian J. 2017, 12, 1309.
[15]
(p) Iida, H.; Yuasa, Y.; Kibayashi, C. J. Am. Chem. Soc. 1978, 100, 3598.
[15]
(q) Padwa, A.; Brodney, M. A.; Lynch, S. M. J. Org. Chem. 2001, 66, 1716.
[15]
(r) Miranda, L. D.; Zard, S. Z. Org. Lett. 2002, 4, 1135.
[15]
(s) Zhang, H.; Shao, Z.; Chen, J.; Huang, R.; Wang, C.; Li, L. Synlett 2003, 2228.
[15]
(t) Gao, S.; Tu, Y. Q.; Song, Z.; Wang, A.; Fan, X.; Jiang, Y. J. Org. Chem. 2005, 70, 6523.
[15]
(u) Jung, Y.-G.; Lee, S.-C. L.; Cho, H.-K.; Darvatkar, N. B.; Song, J.-Y.; Cho, C.-G. Org. Lett. 2013, 15, 132.
[15]
(v) Liu, D.; Ai, L.; Li, F.; Zhao, A.; Chen, J.; Zhang, H.; Liu, J. Org. Biomol. Chem. 2014, 12, 3191.
[15]
(w) Yu, W. L.; Nunns, T.; Richardson, J.; Booker-Milburn, K. I. Org. Lett. 2018, 20, 1272.
[15]
(x) Rocaboy, R.; Dailler, D.; Baudoin, O. Org. Lett. 2018, 20, 772.
[15]
(y) Wilson, K. B.; Nedzbala, H. S.; Simpson, S. R.; Ericson, M. N.; Westendorff, K. S.; Chordia, M. D.; Dickie, D. A.; Harman, W. D. Helv. Chim. Acta 2021, 104, e2100103.
文章导航

/