研究论文

镍/可见光协同催化的溴代芳烃与醇的C-O键偶联反应

  • 高山 ,
  • 解鑫 ,
  • 刘元红
展开
  • a河南先进技术研究院 郑州大学 郑州 450001;
    b中国科学院上海有机化学研究所 金属有机化学国家重点实验室 中国科学院大学 上海 200032

收稿日期: 2025-06-05

  修回日期: 2025-07-24

  网络出版日期: 2025-08-27

基金资助

中国科学院基础与交叉前沿科研先导专项基金(No. XDB0610000),河南省科学院高新技术研究中心科研启动基金资助(No. 242002063)项目.

Nickel/Photoredox Dual-Catalyzed C-O Bond Coupling Reactions of Aryl Bromides with Alcohols

  • Gao Shan ,
  • Xie Xin ,
  • Liu Yuanhong
Expand
  • aHenan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001;
    bState Key Laboratory of Organometallic Chemistry, Shanghai Inistitute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032

Received date: 2025-06-05

  Revised date: 2025-07-24

  Online published: 2025-08-27

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0610000),the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences (No. 242002063)

摘要

本论文研究了镍/可见光协同催化的溴代芳烃/杂芳烃与醇的C-O键偶联反应。在456 nm 蓝光的照射下,以有机光敏剂 4CzIPN或者4DPAIPN为光催化剂,以NiBr2·DME、配体和碱为协同催化体系,高效地实现了烷基芳基醚类化合物的合成。该反应可能经历了Ni(0)中间体与溴代芳烃的氧化加成、与醇的配体交换、所得到的Ni(II)中间体被激发态的光催化剂氧化得到Ni(III)中间体,随后发生还原消除的过程。该反应具有良好的底物适用性,可以用于苄醇、一级醇与二级醇的转化,且官能团兼容性较好。

本文引用格式

高山 , 解鑫 , 刘元红 . 镍/可见光协同催化的溴代芳烃与醇的C-O键偶联反应[J]. 有机化学, 0 : 10 -10 . DOI: 10.6023/cjoc202506009

Abstract

A nickel/photoredox dual-catalyzed C-O bond coupling reaction between aryl/heteroaryl bromides and alcohols has been developed. Alkyl aryl ethers were efficiently synthesized by using organic photoredox-catalyst 4CzIPN or 4DPAIPN in the presence of NiBr2·DME, a ligand, and a base under 456 nm blue LED irradiation at room temperature. The reaction likely involves the oxidative addition of Ni(0) intermediate to aryl bromide, ligand exchange with the alcohol, oxidization of the resulting Ni(II) intermediate by the excited photoredox catalyst to form Ni(III) intermediate, and subsequent reductive elimination. This method exhibits broad substrate scope of alcohols, including benzyl alcohols, primary alcohols, and secondary alcohols, and with remarkable functional group tolerance.

参考文献

[1] Chen, Z.; Jiang, Y.; Zhang, L.; Guo, Y.; Ma, D. J. Am. Chem. Soc. 2019, 141, 3541.
[2] Sun, W.; Chen, B.; You, H.; Fang, L.; Qian, J.; Tong, S. J. Sep. Sci. 2022, 45, 3022.
[3] Bailly, C. Cytokine. 2023, 168, 156234.
[4] Mudde, S. E.; Upton, A. M.; Lenaerts, A.; Bax, H. I.; Steenwinkel, J. E. M. D. J. Antimicrob. Chemother. 2022, 77, 880.
[5] Arefanian, H.; Koti, L.; Sindhu, S.; Ahmad, R.; Madhoun, A. A.; Al-Mulla, F. Frontiers in Pharmacology. 2023, 14, 1322148.
[6] Ciciliati, M. A.; Eusébio, M. E. S.; Silva, M. R.; Cavalheiro, é. T. G.; Castro, R. A. E. CrystEngComm. 2019, 21, 4319.
[7] Kim, A.; Powers, J. D.; Toczko, J. F. J. Org. Chem. 2006, 71, 2170.
[8] Henderson, A. S.; Medina, S.; Bower, J. F.; Galan, M. C. Org. Lett. 2015, 17, 4846.
[9] Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev. 2005, 9, 206.
[10] a) Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
b) Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Alikarami, M. Synlett. 2005, 7, 1101.
[11] a) Medda, A.; Pal, G.; Singha, R.; Hossain, T.; Saha, A.; Das, A, R. Synth. Commun. 2013, 43, 169.
b) Wang, R.; Wang, L.; Zhang, K.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Letters. 2015, 56, 4815.
[12] Lepore, S. D.; He, Y. J. Org. Chem. 2003, 68, 8261.
[13] a) Shi, J.-Y.; Hughes, D. L.; McNamara, J. M. Tetrahedron Letters. 2003, 44, 3609.
b) Elmer, S. L.; Zimmerman, S. C. J. Org. Chem. 2004, 69, 7363.
[14] Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109.
[15] Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 3395.
[16] Matsunaga, P. T.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 2075.
[17] Matsunaga, P. T.; Mavropoulos, J. C.; Hillhouse, G. L. Polyhedro. 1995, 14, 175.
[18] Han, R.; Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 8135.
[19] Macgregor, S. A.; Neave, G. W.; Smith, C. Faraday Discuss. 2003, 124, 111.
[20] Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature. 2015, 524, 330.
[21] Zhou, Q.-Q.; Lu, F.-D.; Liu, D.; Lu, L.-Q.; Xiao, W.-J. Org. Chem. Front. 2018, 5, 3098.
[22] Escobar, R. A.; Johannes, J. W. Chem. Eur. J. 2020, 26, 5168.
[23] He, X.; Zhang, Y.-Y.; Shou, J.-Y.; Chu, L.; Qing, F.-L. Org. Lett. 2024, 26, 6782.
[24] Yang, L.; Lu, H.-H.; Lai, C.-H.; Li, G.; Zhang, W.; Cao, R.; Liu, F.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed. 2020, 59, 12714.
[25] Luo, H.; Wang, G.; Feng, Y.; Zheng, W.; Kong, L.; Ma, Y.; Matsunaga, S.; Lin, L. Chem. Eur. J. 2023, 29, e202202385.
[26] Bahri, J.; Deolka, S.; Vardhanapu, P. K.; Khaskin, E.; Govindarajan, R.; Fayzullin, R. R.; Vasylevskyi, S.; Khusnutdinova, J. R. ChemCatChem. 2023, 15, e202301142.
[27] Cavedon, C.; Madani, A.; Seeberger, P. H.; Pieber, B. Org. Lett. 2019, 21, 5331.
[28] Liu, Y.-Y.; Liang, D.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019, 55, 4853.
[29] Vijeta, A.; Casadevall, C.; Roy, S.; Reisner, E. Angew. Chem. Int. Ed. 2021, 60, 8494.
[30] Dong, W.; Yang, Y.; Xiang, Y.; Wang, S.; Wang, P.; Hu, J.; Rao, L.; Chen, H. Green. Chem. 2021, 23,5797.
[31] Zhao, E.; Chen, L.; Zhu, Q.; Chen, Z.; Wei, Y.; Zhang, W.; Dong, L.; Fang, W.; Chen, Z. Chin. J. Chem. 2023, 41, 3281
[32] a) Lee, H.; Boyer, N. C.; Deng, Q.; Kim, H.-T.; Swayer, T. K.; Sciammetta, N. Chem. Sci. 2019, 10, 5073.
b) Ghosh, I.; Shlapakov, N.; Karl, T. A.; Düker, J.; Nikitin, M.; Burykina, J. V.; Ananikov, V. P.; König, B. Nature. 2023, 619, 87.
[33] a) Liu, J.; Xiao, Y.; Hao, J.; Shen, Q. Org. Lett. 2023, 25, 1204.
b) Hu, H.-C.; Wang, Z.-P.; Lin, L.; Du, X.-Y.; Li, T.; Feng, J.; Xiao, T.-T.; Jin, Z.-M.; Ding, S.-Y.; Liu, Q.; Lu, L.-Q.; Xiao, W.-J.; Wang, W. Chem. Eur. J. 2024, 30, e202303476.
c) Huang, X.; Tang, L.; Song, Z.; Jiang, S.; Liu, X.; Ma, M.; Chen, B.; Ma, Y. Org. Lett. 2023, 25, 1198.
d) Li, B.; Liu, Y.; Song, Y.-L.; Sun, H.-M. Tetrahedron. Lett. 2023, 127, 154690.
e) Yan, Y.; Sun, J.; Li, G.; Yang, L.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Org. Lett. 2022, 24, 2271.
f) Davies, J.; Janssen-Müller, D.; Zimin, D. P.; Day, C. S.; Yanagi, T.; Elfert, J.; Martin, R. J. Am. Chem. Soc. 2021, 143, 4949.
g) Komeyama, K.; Yamada, T.; Igawa, R.; Takaki, K. Chem. Commun. 2012, 48, 6372.
h) Lu, P.; Ren, X.; Xu, H.; Lu, D.; Sun, Y.; Lu, Z. J. Am. Chem. Soc. 2021, 143, 12433.
i) Nara, S. J.; Jha, M.; Brinkhorst, J.; Zemanek, T. J.; Pratt, D. A. J. Org. Chem. 2008, 73, 9326.
j) Wang, X.; Tang, Y.; Long, C.-Y.; Dong, W.-K.; Li, C.; Xu, X.; Zhao, W.; Wang, X.-Q. Org. Lett. 2018, 20, 4749.
k) Hurley, K. A.; Santos, T. M. A.; Fensterwald, M. R.; Rajendran, M.; Moore, J. T.; Balmond, E. I.; Blahnik, B. J.; Faulkner, K. C.; Foss, M. H.; Heinrich, V. A.; Lammers, M. G.; Moore, L. C.; Reynolds, G. D.; Shearn-Nance, G. P.; Stearns, B. A.; Yao, Z.-W.; Shaw, J. T.; Weibel, D. B. Med. Chem. Commun. 2017, 8, 942.
文章导航

/