本研究以天然氨基酸为原料,制备了一系列新型手性酰胺类配体,并将其与铜盐原位配位,用于催化3-羟基-2-萘酸酯的不对称氧化自偶联反应。通过对反应条件的系统优化,发现在以L3 (5 mol %)为配体,CuCl (5 mol %) 为催化剂,二氯甲烷为溶剂,TEMPO/O₂为氧化剂, 40 ℃的反应条件下,该方法表现出良好的底物耐受性,以45 - 90 %的产率和50:50 - 97:3的对映选择性合成了一系列手性BINOL衍生物。
Wang
,
Wen-Long
,
Wen
,
Jia-Xu
,
Chen
,
Fei
,
Bo
,
Chunbo
,
Li
,
Min
,
Liu
,
Ning
,
Du
,
Zhi-Hong
. 铜催化的3-羟基-2-萘甲酸酯的不对称氧化偶联反应:氨基酸类配体的设计与优化[J]. 有机化学, 0
: 0
.
DOI: 10.6023/cjoc202505013
In this study, a series of new chiral amide ligands were prepared from natural amino acids and applied to the copper-catalyzed asymmetric oxidative homocoupling reaction of 3-hydroxy-2-naphthoates. By optimizing the reaction conditions, it was found that when using L3 (5 mol %) as the ligand, CuCl (5 mol %) as the catalyst, dichloromethane as the solvent, TEMPO/O₂ as the oxidant, and under the reaction condition of 40 °C, this method exhibited good substrate tolerance. Under these conditions, the method exhibited good tolerance, and a series of chiral BINOL derivatives were synthesized with yields of 45-90% and enantioselectivities ranging from 50:50 to 97:3.
[1] Kozlowski M. C.;Morgan B. J.; Linton E. C. Chem. Soc. Rev. 2009, 38, 3193.
[2] Bringmann G.;Gulder T.; Gulder T. A. M.; Breuning M. Chem. Rev. 2011, 111, 563.
[3] Moore M. J.;Qu S.;Tan C.; Cai Y.; Mogi Y.; Keith D. J.; Boger D. L. J. Am. Chem. Soc. 2020, 142, 16039.
[4] Wang Z.;Meng L.;Liu X.; Zhang L.; Yu Z.; Wu G. Eur. J. Med. Chem. 2022, 243, 114700.
[5] Brunel, J. M. Chem. Rev. 2005, 105, 857.
[6] Wencel-Delord, J.; Panossian A.; Leroux F. R.; Colobert F. Chem. Soc. Rev. 2015, 44, 3418.
[7] Chen Y.;Yekta S.;Yudin A. K. Chem. Rev. 2003, 103, 3155.
[8] Cheng J. K.;Xiang S.-H.; Li S.; Ye L.;Tan B. Chem. Rev. 2021, 121, 4805.
[9] Cheng J. K.;Xiang S.-H.; Tan B. Acc. Chem. Res. 2022, 55, 2920.
[10] Wang Y.-B.;Tan B. Acc. Chem. Res. 2018, 51, 534.
[11] Wu J.;Kozlowski M. C. ACS Catal. 2022, 12, 6532.
[12] Cheng A.;Zhang L.; Zhou Q.; Liu T.; Cao J.; Zhao G.; Zhang K.; Song G.; Zhao B. Angew. Chem. Int. Ed. 2021, 60, 20166.
[13] Xu B.;Shi L.-L.; Zhang Y.-Z.; Wu Z.-J.; Fu L.-N.; Luo C.-Q.;Zhang L.-X.;Peng Y.-G.; Guo Q.-X. Chem. Sci. 2014, 5, 1988.
[14] Takaishi K.;Yasui M.; Ema T. J. Am. Chem. Soc. 2018, 140, 5334.
[15] Wen K.;Yu S.; Huang Z.; Chen L.;Xiao M.; Yu X.; Pu L. J. Am. Chem. Soc. 2015, 137, 4517.
[16] Brunel, J. M. Chem. Res.2007, 107, PR1.
[17] Egami H.;Katsuki T. J. Am. Chem. Soc. 2009, 131, 6082.
[18] Egami H.;Matsumoto K.; Oguma T.; Kunisu T.;Katsuki T. J. Am. Chem. Soc. 2010, 132, 13633.
[19] Narute S.;Parnes R.; Toste F. D.; Pappo D. J. Am. Chem. Soc. 2016, 138, 16553.
[20] Dyadyuk A.;Vershinin V.; Shalit H.;Shalev H.; More N. Y.; Pappo D. J. Am. Chem. Soc. 2022, 144, 3676.
[21] Guo Q.-X.;Wu Z.-J.; Luo Z.-B.; Liu Q.-Z.; Ye J.-L.; Luo S.-W.; Cun L.-F.; Gong L.-Z. J. Am. Chem. Soc. 2007, 129, 13927.
[22] Takizawa S.;Katayama T.; Kameyama C.; Onitsuka K.; Suzuki T.; Yanagida T.; Kawai T.; Sasai H. Chem. Commun. 2008, 15, 1810.
[23] Kumar A.;Sasai H.; Takizawa S. Acc. Chem. Res. 2022, 55, 2949.
[24] Barhate N. B.;Chen C. T. Org. Lett. 2002, 4, 2529.
[25] Irie R.;Kouta Masutani; Katsuki T. Synlett 2000, 10, 1433.
[26] Tanaka H.;Nishikawa H.; Uchida T.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 12034.
[27] Feringa B.;Wynberg H. Bioorgan. Chem. 1978, 7, 397.
[28] Tian J.-M.;Wang A.-F.; Yang J.-S.; Zhao X.-J.; Tu Y.-Q.; Zhang S.-Y.; Chen Z.-M. Angew. Chem. Int. Ed. 2019, 58, 11023.
[29] Wang P.;Cen S.; Gao J.; Shen A.; Zhang Z. Org. Lett. 2022, 24, 2321.
[30] Zuo Q.-M.;Wu M.-Y.; Han L.-B. Y.; Shang-Dong. Org. Lett. 2024, 26, 5274.
[31] Brussee J.;Groenendijk J. L. G.; Koppele J. M. t.; Jansen A. C. A. Tetrahedron 1985, 41, 3313.
[32] Smrcina M.;Polakova J.; Vyskocil S.; Kocovsky P. J. Org. Chem. 1993, 58, 4534.
[33] Nakajima M.;Miyoshi I.; Kanayama K.; Hashimoto S.; Noji M.; Koga K. J. Org. Chem. 1999, 64, 2264.
[34] Prause F.;Arensmeyer B.; Fröhlich B.; Breuning M. Catal. Sci. Technol. 2015, 5, 2215.
[35] Li X. L.;Yang J.; Kozlowski M. C. Org. Lett. 2001, 3, 1137.
[36] Kim K. H.;Lee D. W.; Lee Y. S.; Ko D. H.; Ha D. C. Tetrahedron 2004, 60, 9037.
[37] Sabarinathan S.;Vasuki G.; Rao P. S. Eur. J. Chem. 2010, 1, 360-367.
[38] Gao J.;Reibenspies J. H.; Martell A. E. Angew. Chem. Int. Ed. 2003, 42, 6008.
[39] Zhang Q.;Cui X.; Chen L.; Liu H.; Wu Y. Eur. J. Org. Chem. 2014, 35, 7823.
[40] Alamsetti S. K.;Poonguzhali E.; Ganapathy D.; Sekar G. Adv. Synth. Catal. 2013, 355, 2803.
[41] Shen A.;Xu J.; Gao J.; Cen S.; Zhang Z. J. Org. Chem. 2024, 89, 12842.
[42] Wang W.-L.;Lv X.-X.; Chen F.; Liu N.; Du Z.-H. Tetrahedron 2025, 174, 134495.
[43] Li X. L.;Hewgley J. B.; Mulrooney C. A.; Yang J. M.; Kozlowski M. C. J. Org. Chem. 2003, 68, 5500.
[44] Roithova J.;Milko P. J. Am. Chem. Soc. 2010, 132, 281.
[45] Lv X.-X.;Liu N.; Chen F.; Zhang H.; Du Z.-H.; Wang P.; Yuan M.; Da C. S. Org. Biomol. Chem. 2023, 21, 8695.
[46] Mamidi N.;Manna D. J. Org. Chem. 2013, 78, 2386.
[47] Shen D.;Li L.; Ren T.; Chen K.; Zhang X.; Zhang H.; Zhang S.; Gong P.; Zhang F.; Chao M. J. Org. Chem. 2024, 89, 2691.
[48] Zhao X.-J.;Li Z.-H.; Ding T.-M.; Tian J.-M.; Tu Y.-Q.; Wang A.-F.; Xie Y.-Y. Angew. Chem. Int. Ed. 2021, 60, 7061.
[49] Corti V.;Thaegersen M. K.; Enemaerke V. J.; Rezayee N. M.; Barlose C. L.; Jorgensen K. A. Chem. Eur. J. 2022, 28
[50] Rong M.-G.;Qin T.-Z.; Liu X.-R.; Wang H.-F.; Zi W. Org. Lett. 2018, 20, 6289.
[51] Niu C.;Zhou Y.; Chen Q.; Zhu Y.; Tang S.; Yu Z.-X.; Sun J. Org. Lett. 2022, 24, 7428.
[52] Dyadyuk A.;Vershinin V.; Shalit H.; Shalev H.; More N. Y.; Pappo D. J. Am. Chem. Soc. 2022, 144, 3676.