硫色酮甲酰胺衍生物的合成及其抑菌活性

  • 周蒲 ,
  • 苏子洋 ,
  • 崔得运 ,
  • 程绎南 ,
  • 李毅 ,
  • 周海峰 ,
  • 孙炳剑 ,
  • 李洪连
展开
  • a.河南农业大学植保学院, 郑州, 邮编 450046;
    b.河南省科学院高新技术研究中心, 郑州, 邮编 450002

收稿日期: 2025-06-20

  修回日期: 2025-08-18

  网络出版日期: 2025-09-24

Synthesis of Thiochromone Formamide Derivatives and Antifungal Activities

  • Zhou Pu ,
  • Su Ziyang ,
  • Cui Deyun ,
  • Cheng Yi-nan ,
  • Li Yi ,
  • Zhou Haifeng ,
  • Sun Bingjian ,
  • Li Honglian
Expand
  • aPlant Protection College of Henan Agricultural University, Zhengzhou 450046;
    bHigh & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002

Received date: 2025-06-20

  Revised date: 2025-08-18

  Online published: 2025-09-24

Supported by

Key R&D Special Project of Henan Province (No 251111111600), Key Research Project Plan for Higher Education Institutions in Henan Province (NO. 25A210014), High-level Talent Research Start-up Project Funding of Henan Academy of Sciences (NO. 241802037).

摘要

设计了具有新型结构的2-取代硫色酮甲酰胺衍生物, 分别以2-氯苯乙酮和2-巯基苯甲酸为原料设计了两条相应化合物的合成路线, 合成了13个2-取代硫色酮甲酰胺衍生物, 其结构通过1H NMR、13C NMR 和 HRMS 进行了表征, 利用平皿法研究了化合物对小麦全蚀病菌的抑制活性.构-效关系研究表明, 2-位取代基对化合物活性具有重要影响, 化合物6f对小麦全蚀病菌具有较好的抑制活性, 在50 mg/L浓度下可以达到100%的抑制率; 进一步研究结果表明化合物13e对小麦全蚀病菌的抑制效果突出, 在12.5 mg/L浓度下亦可以达到100%的抑制率, 其计算的EC50值达到了0.07 mg/L的较低水平, 抑制活性超过了阳性对照硅噻菌胺(EC50 26.7 mg/L). 该研究将对活性化合物进一步结构设计与优化提供一定帮助, 为新农药的创制提供参考.

本文引用格式

周蒲 , 苏子洋 , 崔得运 , 程绎南 , 李毅 , 周海峰 , 孙炳剑 , 李洪连 . 硫色酮甲酰胺衍生物的合成及其抑菌活性[J]. 有机化学, 0 : 2 . DOI: 10.6023/cjoc202506027

Abstract

New thiochromone formamide derivatives substituted at position 2 were designed and two synthetic routes for these compounds were developed using 1-(2-chlorophenyl)ethanone and 2-mercaptobenzoic acid as materials respectively. Thirteen 2-substituted thiochromone formamides were synthesized. Their structures were characterized by 1H NMR、13C NMR and HRMS. Their antifungal activities against Gaeumannomyces graminis var. tritici were evaluated in vitro by the plate method. The results of structure-activity relationship indicated that the group at position 2 of thiochromone formamide derivatives had an important influence on their antifungal activities against Gaeumannomyces graminis var. tritici. Compound 6f showed a good activity. Its inhibitory rate reached up to100% at 50 mg/L. Further results showed that the activity of compound 13e against Gaeumannomyces graminis var. tritici was excellent. Its inhibitory rate also reached up to100% at 12.5 mg/L with a lower value of EC50 (0.07 mg/L) than positive control Silthiopham (EC50 26.7 mg/L). The results will provide some help for design of new active compounds and development of new fungicides.

参考文献

[1] Freeman J.; Ward, E. Mol. Plant Pathol.2004, 5, 235-252.
[2] Bateman G. L.; Gutteridge R.J.; Jenkyn J.F.; Self, M.M.Annals of Applied Biology, 2008, 152, 243-254.
[3] Phillion D.; Wong S. C.; Shortt B. US5486621,1996[Chem. Abstr. 1996, 124, 253325]
[4] Yun Y. Z.; Yu F. W.; Wang N.; Chen H. G.; Yin. Y. N.; Ma, Z. H.Pest Management Science, 2012, 68(8), 1156~1163.
[5] Xie G.; Jin W.; Zhao Y.; Cheng Y.; Sun B.; Sun S.; Wang M.; Wei D.; Li, H. Chin. J. Org. Chem.2014, 34, 1124~1131 (in Chinese).
(谢桂英, 靳文波, 赵艳芹, 程绎南, 孙炳剑, 孙淑君, 汪梅子, 位丹丹, 李洪连, 有机化学, 2014, 34, 1124~1131.)
[6] Jin W.; Xie G.; Sun S.; Zhao Y.; Cheng Y.; Sun B.; Li, H. Chin. J. Org. Chem.2014, 34, 2376 (in Chinese).
(靳文波, 谢桂英, 孙淑君, 赵艳芹, 程绎南, 孙炳剑, 李洪连, 有机化学, 2014, 34, 2376.)
[7] Phillion D. P.; Braccolino D. S.; Graneto M. J.; Phillips W. Gary.; Van Sant K. A.; Walker D. M.; Wong S. C. EP538231,1993[Chem. Abstr. 1993, 119, 160256]
[8] Phillips, W.G.; Mao, M. K.; Ma, C.; Fevig T. WO9962915, 1999[Chem. Abstr. 1999, 132, 23082] .
[9] Huan X.; Wang Y.; Peng X.; Xie S.; He Q.; Zhang X.; Lan L.; Yang C.European Journal of Medicinal Chemistry, 2022, 236, 114309.
[10] Xiao T., Chen G.C., Hu B. CN108003133,2016[Chem. Abstr. 2016, 169, 16765]
(肖涛, 陈国策, 胡彪. CN108003133, 2016[Chem. Abstr. 2016, 169, 16765] )
[11] Holshouser M. H.; Loeffler L. J.; Hall I. H. J. Med. Chem. 1981, 24, 853-858.
[12] Dhanak D.; Keenan R. M.; Burton G.; Kaura A.; Darcy M. G.; Shah D. H.; Ridgers L. H.; Breen A.; Lavery P.; Tew D. G.; West A. Bioorganic & Medicinal Chemistry Letters, 1998, 8(24), 3677-3682.
[13] Mi P.; Tan Y.; Ye S.; Lang J.; Lv Y.; Jiang J.; Chen L.; Luo J.; Lin Y.; Yuan Z.; Zheng X.; Lin Y.European Journal of Medicinal Chemistry, 2024, 263, 115956.
[14] Hirao I.; Yamaguchi M.; Terada T.; Hasebe K.Bulletin of the Chemical Society of Japan, 1985, 58(8), 2203-2206.
[15] Tao J.; Tuck T. N.; Murphy G. K.Synthesis, 2016, 48(5), 772-782.
[16] Li X.; Ze X.; Zhou S.; Hu Z.; He C.; Jia Y.; Liu L.; Wang T.; Li J.; Xu S.; Yang D.; Chen Z.; Yao, H. ; Xu, J.; Yao H. Journal of Medicinal Chemistry, 2023, 66(7), 5118-5153.
[17] Li P.; Wu Y.; Zhang T.; Ma C.; Lin Z.; Li G.; Huang H. Beilstein Journal of Organic Chemistry, 2019, 15, 703-709.
[18] Li M.; Petersen J. L.; Hoover J. M.Organic Letters, 2017, 19(3), 638-641.
[19] Nguyen T. T.H.; Nguyen, T. X.; Cao, T. T. T.; Dinh, T. H.; Nguyen, H. H.; Bui, T. T. T.; Pham, V. P.; Mac, D. H.Synlett, 2017, 28(4), 429-432.
[20] Wang L.; Zhang Y.; Wang D.; Wang M.; Wang Y.; Feng J.J. Agric. Food Chem. 2018, 66(1), 81~90.
文章导航

/