综述与进展

糖羟基的选择性氧化反应研究进展

  • 杨其昌 ,
  • 张筱睿 ,
  • 吕剑 ,
  • 古双喜
展开
  • 武汉工程大学 化工与制药学院 武汉 430205

收稿日期: 2025-08-26

  修回日期: 2025-11-18

  网络出版日期: 2025-12-10

Advances in Selective Oxidation of Carbohydrates

  • Yang Qichang ,
  • Zhang Xiaorui ,
  • Lv Jian ,
  • Gu Shuang-Xi
Expand
  • School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205

Received date: 2025-08-26

  Revised date: 2025-11-18

  Online published: 2025-12-10

摘要

糖类作为自然界最丰富的生物分子之一,在生物活性分子合成、药物开发及材料科学等领域具有重要作用。糖羟基的选择性氧化是合成糖衍生物及实现官能团转化的关键策略之一。然而,糖分子固有的多羟基结构及其羟基间反应活性相近的特性,使得其选择性修饰长期面临巨大挑战。传统方法依赖繁琐的保护-脱保护步骤,导致合成路线冗长、效率低下。近年来,无保护糖分子的直接选择性催化氧化已成为新兴研究热点。该策略显著简化了合成路线,提高了原子经济性,并降低了环境影响。本文综述了无保护或少保护糖分子选择性催化氧化的研究进展,重点评述了不同催化体系,包括金属催化、光催化、电催化等在该领域的应用。

本文引用格式

杨其昌 , 张筱睿 , 吕剑 , 古双喜 . 糖羟基的选择性氧化反应研究进展[J]. 有机化学, 0 : 8023 . DOI: 10.6023/cjoc202508023

Abstract

Carbohydrates, among the most abundant biomolecules in nature, play crucial roles in the synthesis of bioactive molecules, drug development, and materials science. The selective oxidation of sugar hydroxyl groups represents a key strategy for synthesizing carbohydrate derivatives and achieving functional group interconversion. However, the inherent polyhydroxy structure and the similar reactivity of their hydroxyl groups present significant challenges for selective modification. Traditional methods rely on tedious protection/deprotection steps, leading to lengthy and inefficient synthetic routes. In recent years, the direct selective catalytic oxidation of unprotected sugars has emerged as a prominent research focus. This strategy significantly streamlines synthetic pathways, enhances atom economy, and reduces environmental impact. This review summarizes the progress in selective catalytic oxidation of unprotected or minimally protected sugars, providing a critical discussion of various catalytic systems employed in this field, including metal catalysis, photocatalysis, and electrocatalysis.

参考文献

[1] Huang G. L.; Dai Y. P. Synlett2010, 2010, 1554.
[2] Zhan Z. L.; Ren F. X.; Zhao, Y. M. Carbohydr. Res.2010, 345, 315.
[3] (a) Zhang J.; Eisink N. N. H. M.; Witte M. D.; Minnaard, A. J. J. Org. Chem.2019, 84, 516.
(b) Agarwal, J.; Peddinti, R. K. J. Org. Chem. 2011, 76, 3502.
[4] (a) Reintjens N. R. M.; Witte M. D.; Minnaard, A. J. Org. Biomol. Chem.2023, 21, 5098.
(b) Zhang, J.; Reintjens, N. R. M.; Dhineshkumar, J.; Witte, M. D. Org. Lett. 2022, 24, 5339.
[5] Xiao G. Y.; Su G.; Slawin A. M. Z.; Westwood, N. Eur. J. Org. Chem.2022, 2022, e202101308.
[6] (a) Marinus N.; Tahiri N.; Duca M.; Mouthaan L. M. C. M.; Bianca S.; van den Noort M.; Poolman B.; Witte M. D.; Minnaard, A. J. Org. Lett.2020, 22, 5622.
(b) Jumde V. R.; Eisink N. N. H. M.; Witte M. D.; Minnaard, A. J. J. Org. Chem.2016, 81, 11439.
[7] (a) Chung K.; Banik S. M.; De Crisci A. G.; Pearson D. M.; Blake T. R.; Olsson J. V.; Ingram A. J.; Zare R. N.; Waymouth, R. M. J. Am. Chem. Soc.2013, 135, 7593.
(b) Hu, M.; Wu, W. Q.; Jiang, H. F. ChemSusChem 2019, 12, 2911.
(c) Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636.
[8] Wan I. C.; Hamlin T. A.; Eisink N. N. H. M.; Marinus N.; De Boer C.; Vis C. A.; Codée J. D. C.; Witte M. D.; Minnaard A. J.; Bickelhaupt, F. M. Eur. J. Org. Chem.2021, 2021, 632.
[9] Eisink N. N. H. M.; Witte M. D.; Minnaard, A. J. ACS Catal.2017, 7, 1438.
[10] Painter R. M.; Pearson D. M.; Waymouth, R. M. Angew. Chem. Int. Ed.2010, 49, 9456.
[11] Jäger M.; Hartmann M.; De Vries J. G.; Minnaard, A. J. Angew. Chem. Int. Ed.2013, 52, 7809-7812.
[12] Eisink N. N. H. M.; Lohse J.; Witte M. D.; Minnaard, A. J. Org. Biomol. Chem.2016, 14, 4859.
[13] Reintjens N. R. M.; Yakovlieva L.; Marinus N.; Hekelaar J.; Nuti F.; Papini A. M.; Witte M. D.; Minnaard A. J.; Walvoort, M. T. C. Eur. J. Org. Chem.2022, 2022, e202200677.
[14] Chung K.; Waymouth, R. M. ACS Catal.2016, 6, 4653.
[15] Marinus N.; Reintjens N. R. M.; Haldimann K.; Mouthaan M. L. M. C.; Hobbie S. N.; Witte M. D.; Minnaard, A. J. Chem. Eur. J.2024, 30, e202400017
[16] Reintjens N. R. M.; Bartels I. M. A.; Marinus N.; Massmann S. C.; Bunt D. V.; Walvoort M. T. C.; Witte M. D.; Minnaard A. J. Synlett2024, 35, 1291.
[17] (a) Martinelli M. J.; Vaidyanathan R.; Van Khau, V. Tetrahedron Lett.2000, 41, 3773.
(b) Demizu, Y.; Kubo, Y.; Miyoshi, H.; Maki, T.; Matsumura, Y.; Moriyama, N.; Onomura, O. Org. Lett. 2008, 10, 5075.
(c) Muramatsu, W.; Tanigawa, S.; Takemoto, Y.; Yoshimatsu, H.; Onomura, O. Chem. Eur. J. 2012, 18, 4850.
(d) Muramatsu, W. J. Org. Chem. 2012, 77, 8083.
(e) Muramatsu, W.; Takemoto, Y. J. Org. Chem. 2013, 78, 2336.
(f) Muramatsu, W.; Yoshimatsu, H. Adv. Synth. Catal. 2013, 355, 2518.
(g) William, J. M.; Kuriyama, M.; Onomura, O. RSC Adv. 2013, 3, 19247.
[18] Tsuda Y.; Hanajima M.; Matsuhira N.; Okuno Y.; Kanemitsu, K. Chem. Pharm. Bull.1989, 37, 2344.
[19] Muramatsu, W. Org. Lett. 2014, 16, 4846.
[20] Branquet D.; Boune M. V. S.; Hucher N.; Taillier C.; Dalla V.; Comesse S.; Benhamou L. Green Chem.2022, 24, 7682.
[21] Bandyopadhyay U.; Lancien A.; Branquet D.; Lhoste J.; Comesse S.; Martel A.; Benhamou L. ChemCatChem2024, 16, e202400411.
[22] Trincado M.; Kühlein K.; Grützmacher, H. Chem. Eur. J.2011, 17, 11905.
[23] (a) Rueping M.; Vila C.; Szadkowska A.; Koenigs R. M.; Fronert J. ACS Catal.2012, 2, 2810.
(b) Kamijo, S.; Tao, K.; Takao, G.; Tonoda, H.; Murafuji, T. Org. Lett. 2015, 17, 3326.
(c) Zelenka, J.; Svobodová, E.; Tarábek, J.; Hoskovcová, I.; Boguschová, V.; Bailly, S.; Sikorski, M.; Roithová, J.; Cibulka, R. Org. Lett. 2019, 21, 114.
(d) Zhang, H; Guo, T. Y.; Wu, M. Z.; Huo, X.; Tang, S. C.; Wang, X. L.; Liu, J. Tetrahedron Lett. 2021, 67, 152878.
[24] Lenz R.; Giese, B. J. Am. Chem. Soc.1997, 119, 2784.
[25] Masuda Y.; Tsuda H.; Murakami M.Angew. Chem. Int. Ed. 2020, 59, 2755.
[26] Dimakos V.; Gorelik D.; Su H. Y.; Garrett G. E.; Hughes G.; Shibayama H.; Taylor, M. S. Chem. Sci.2020, 11, 1531.
[27] Gorelik D. J.; Dimakos V.; Adrianov T.; Taylor, M. S. Chem. Commun.2021, 57, 12135.
[28] Turner J. A.; Rosano N.; Gorelik D. J.; Taylor, M. S. ACS Catal.2021, 11, 11171.
[29] Carder H. M.; Suh C. E.; Wendlandt, A. E. J. Am. Chem. Soc.2021, 143, 13798.
[30] Wu M. Z.; Jiang Q.; Tian Q.; Guo T. Y.; Cai F.; Tang S. C.; Liu J.; Wang, X. L. CCS Chem.2022, 4, 3599.
[31] Guo T.; Xu W.; Wang X. Org. Lett.2025, 27, 5794.
[32] (a) Kwon Y.; Birdja Y.; Spanos I.; Rodriguez P.; Koper, M. T. M. ACS Catal.2012, 2, 759.
(b) Suga, T.; Shida, N.; Atobe, M. Electrochem. Commun. 2021, 124, 106944.
(c) Laan, P. C. M.; de Zwart, F. J.; Wilson, E. M.; Troglia, A.; Lugier, O. C. M.; Geels, N. J.; Bliem, R.; Reek, J. N. H.; de Bruin, B.; Rothenberg, G.; Yan, N. ACS Catal. 2023, 13, 8467.
[33] Kapetanovic E.; Beil S. B. ChemElectroChem2023, 10, e202300411.
[34] Schnatbaum K.; Schäfer H. J.Synthesis 1999, 864.
[35] Parpot P.; Servat K.; Bettencourt A. P.; Huser H.; Kokoh K. B. Cellulose2010, 17, 815.
[36] Kidonakis M.; Villotet A.;Witte M. D.; Beil S. B.; Minnaard, A. J. ACS Catal.2023, 13, 2335.
[37] Volc J.; Sedmera P.; Halada P.; Daniel G.; Přikrylová, V., Haltrich, D. J. Mol. Catal. B: Enzym.2002, 17, 91.
[38] Savino S.; Fraaije, M. W. Biotechnol. Adv.2021, 51, 107634.
[39] Breton T.; Bashiardes G.; Leger J. M.; Kokoh, K. B. Eur. J. Org. Chem.2007, 2007, 1567.
[40] (a) Dimakos V.; Taylor, M. S. Chem. Rev.2018, 118, 11457.
(b) Blaszczyk, S. A.; Homan, T. C.; Tang, W. Carbohydr. Res. 2019, 471, 64.
(c) Shang, W.; He, B.; Niu, D. Carbohydr. Res. 2019, 474, 16.
[41] (a) Lv J.; Ge J.-T.; Luo T.; Dong H. Green Chem.2018, 20, 1987.
(b) Lv, J.; Yu, J.-C.; Feng, G.-J.; Luo, T.; Dong, H. Green Chem. 2020, 22, 6936.
(c) Lv, J.; Liu, Y.; Zhu, J.-J.; Zou, D.; Dong, H. Green Chem. 2020, 22, 1139.
(d) Lv, J.; Zhu, J.-J.; Liu, Y.; Dong, H. J. Org. Chem. 2020, 85, 3307.
[42] Li, C.; Jiao, Y.; Shi, X.; Yang, Y.; Yu, S. Chin. J. Org. Chem. 2025, 45, 1423 (in Chinese)
(李晨, 焦毅, 施笑然, 杨毅强, 俞寿云, 有机化学, 2025, 45, 1423).
[43] Zhang, G.; Yu, R.; Chen, Y. Chin. J. Org. Chem. 2025, 45, 1548 (in Chinese)
(张艮红, 余若曦, 陈跃刚, 有机化学, 2025, 45, 1548).
文章导航

/