综述与进展

氧化还原活性配体衍生的有机铀化合物研究进展

  • Cao ,
  • Xiaoying ,
  • Heng ,
  • Yi ,
  • Wang ,
  • Dongwei ,
  • Yang ,
  • Pikun ,
  • Hou ,
  • Guohua ,
  • Zi ,
  • Guofu*/sup>
展开
  • 北京师范大学化学学院 北京 100875

收稿日期: 2025-10-16

  修回日期: 2025-11-17

  网络出版日期: 2025-12-30

基金资助

国家自然科学基金(Nos. 22571018, 22271017, 22571021)资助项目.

Advances in Organouranium Complexes Containing Redox-Active Non-innocent Ligands

  • 曹小英 ,
  • 衡义 ,
  • 王东伟 ,
  • 杨丕堃 ,
  • 侯国华 ,
  • 自国甫
Expand
  • College of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2025-10-16

  Revised date: 2025-11-17

  Online published: 2025-12-30

Supported by

National Natural Science Foundation of China (Nos. 22571018, 22271017, 22571021).

摘要

在过去的20多年中,由于氧化还原活性配体衍生的“低价”锕系金属有机化合物在催化、化工及有机合成等领域的广阔应用前景,有关这一类配合物的合成与应用的研究已经成为金属有机化学的前沿课题。其中,“低价”有机铀化合物因其具有独特的结构特征以及在基团转换与催化方面的潜在应用而受到人们的广泛研究,且取得了一系列具有代表性的研究进展。目前,氧化还原活性配体尤其是2,2′-联吡啶、1,4-二氮杂丁二烯、吡啶双亚胺化合物和芳烃衍生的“低价”有机铀化合物已成为金属有机化学领域中一个引人注目的研究热点。这篇综述主要介绍了氧化还原活性配体2,2′-联吡啶、1,4-二氮杂丁二烯、吡啶双亚胺化合物和芳烃衍生的“低价”有机铀化合物的合成及其在小分子活化方面的反应性研究进展。

本文引用格式

Cao , Xiaoying , Heng , Yi , Wang , Dongwei , Yang , Pikun , Hou , Guohua , Zi , Guofu*/sup> . 氧化还原活性配体衍生的有机铀化合物研究进展[J]. 有机化学, 0 : 123012 -123012 . DOI: 10.6023/cjoc202510012

Abstract

Over the past two decades, the low-valent organoactinide complexes containing redox-active non-innocent ligands have become one of the most promising research frontiers in organometallic chemistry due to their fundamental importance and their extensive applications in organic synthesis, chemical engineering and catalytic processes. Among these, low-valent organouranium complexes have received widespread attention because of their unique structural properties and their potential applications in group transfer and catalysis. Currently, low-valent organouranium complexes containing redox-active non-innocent ligands, in particularly those derived from 2,2′-bipyridine, 1,4-diazabutadienes, pyridine diimines and arenes have been regarded as one of the most remarkable research hotspots in organometallic chemistry. This review summarizes the advances in the preparation of such complexes and their reactivity in small molecule activation.

参考文献

[1] (a) Barnea E.; Eisen, M.S.Coord.Chem.Rev.2006, 250, 855.
(b) Zi, G.-F.; Zhang, Z.-B.; Xiang, L.; Wang, Q.-W.Chin.J.Org.Chem. 2006, 26, 1606 (in Chinese).
(自国甫, 张站斌, 向丽, 王秋文, 有机化学, 2006, 26, 1606.)
(c) Meyer K.; Bart, S.C.Adv.Inorg.Chem.2008, 60, 1.
(d) Andrea T.; Eisen, M.S.Chem.Soc.Rev.2008, 37, 550.
(e) Fox A.R.; Bart S.C.; Meyer K.; Cummins C.C.Nature2008, 455, 341.
(f) Lam O.P.; Meyer, K.Angew.Chem.Int.Ed.2011, 50, 9542.
(g) Arnold, P.L.Chem.Commun. 2011, 47, 9005.
(h) Johnson, K.R.D.; Hayes, P.G.Chem.Soc.Rev. 2013, 42, 1947.
(i) Ephritikhine, M.Organometallics2013, 32, 2464.
(j) Hayton, T.W.Chem.Commun. 2013, 49, 2956.
(k) Ren, W.-S; Zhao, N; Chen, L.; Zi, G.-F.Chin.J.Org.Chem.2013, 33, 771 (in Chinese).
(任文山, 赵宁, 陈亮, 自国甫, 有机化学, 2013, 33, 771.)
(l) Hayton, T.W.Nat.Chem. 2013, 5, 451.
(m) La Pierre H.S.; Meyer, K.Prog.Inorg.Chem.2014, 58, 303.
(n) Zi, G.Sci.China: Chem. 2014, 57, 1064.
(o) Arnold P.L.; McMullon M.W.; Rieb J.; Kühn, F.E.Angew.Chem.Int.Ed.2015, 54, 82.
(p) Liddle, S.T.Angew.Chem.Int.Ed.2015, 54, 8604.
(q) Yue, G.-Z.; Gao, R.; Zhao, P.-X.; Chu, M.-F.; Shuai, M.-B. Acta Chim.Sinica 2016, 74, 657 (in Chinese).
(岳国宗, 高瑞, 赵鹏翔, 褚明福, 帅茂兵, 化学学报, 2016, 74, 657.)
(r) Ephritikhine, M.Coord.Chem.Rev. 2016, 319, 35.
(s) Zi, G.Chem.Commun. 2018, 54, 7412.
(t) Schädle D.; Anwander, R.Chem.Soc.Rev.2019, 48, 5752.
(u) Revathi S.; Raja P.; Saha S.; Eisen M.S.; Ghatak T.Chem.Commun.2021, 57, 5483.
(v) Chen, X.; Xu, H.-H.; Shi, X.-H.; Wei, J.-N.; Xi, Z.-F.Acta Chim.Sinica 2022, 80, 1299 (in Chinese).
(陈霄, 许汉华, 石向辉, 魏俊年, 席振峰, 化学学报, 2022, 80, 1299.)
(w) Deng, C.; Huang, W.-L.Chin.J.Org.Chem.2023, 43, 3337 (in Chinese).
(邓翀, 黄闻亮, 有机化学, 2023, 43, 3337.)
(x) Liddle, S.T.Inorg.Chem. 2024, 63, 9366.
(y) Li Y.; Xin X.; Zhu Q.; Zhu C.JACS Au2024, 4, 4612.
(z) Deng, C.; Wang, Y.; Huang, W.-L.Chin.J.Org.Chem.2025, 45, 56 (in Chinese).
(邓翀, 王怡, 黄闻亮, 有机化学, 2025, 45, 56.)
[2] Nugent L.J.; Baybarz R.D.; Burnett J.L.; Ryan, J.L.J.Phys.Chem.1973, 77, 1528.
[3] (a) Langeslay R.R.; Fieser M.E.; Ziller J.W.; Furche F.; Evans, W.J.Chem.Sci.2015, 6, 517.
(b) Langeslay R.R.; Fieser M.E.; Ziller J.W.; Furche F.; Evans, W.J.J.Am.Chem.Soc.2016, 138, 4036.
(c) Nguyen, J.Q.; Anderson-Sanchez, L.M.; Moore, W.N.G.; Ziller, J.W.; Furche, F.; Evans, W.J.Organometallics 2023, 42, 2927.
[4] (a) MacDonald M.R.; Fieser M.E.; Bates J.E.; Ziller J.W.; Furche F.; Evans, W.J.J.Am.Chem.Soc.2013, 135, 13310.
(b) La Pierre H.S.; Scheurer A.; Heinemann F.W.; Hieringer W.; Meyer, K.Angew.Chem.Int.Ed.2014, 53, 7158.
(c) Windorff C.J.; MacDonald M.R.; Meihaus K.R.; Ziller J.W.; Long J.R.; Evans, W.J.Chem.Eur.J.2016, 22, 772.
(d) Huh D.N.; Ziller J.W.; Evans, W.J.Inorg.Chem.2018, 57, 11809.
(e) Billow B.S.; Livesay B.N.; Mokhtarzadeh C.C.; McCracken J.; Shores M.P.; Boncella J.M.; Odom, A.L.J.Am.Chem.Soc.2018, 140, 17369.
(f) Ryan A.J.; Angadol M.A.; Ziller J.W.; Evans, W.J.Chem.Commun.2019, 55, 2325.
(g) Guo F.-S.; Tsoureas N.; Huang G.-Z.; Tong M.-L.; Mansikkamäki A.; Layfield, R.A.Angew.Chem.Int.Ed.2020, 59, 2299.
(h) Wedal J.C.; Bekoe S.; Ziller J.W.; Furche F.; Evans W.J.Organometallics2020, 39, 3425.
(i) Wedal J.C.; Furche F.; Evans, W.J.Inorg.Chem.2021, 60, 16316.
(j) Straub M.D.; Ouellette E.T.; Boreen M.A.; Britt R.D.; Chakarawet K.; Douair I.; Gould C.A.; Maron L.; Rosal I.D.; Villarreal D.; Minasian S.G.; Arnold, J.J.Am.Chem.Soc.2021, 143, 19748.
(k) Keener, M.; Shivaraam, R.A.K.; Rajeshkumar, T.; Tricoire, M.; Scopelliti, R.; Zivkovic, I.; Chauvin, A.-S.; Maron, L.; Mazzanti, M.J.Am.Chem.Soc.2023, 145, 16271.
(l) Peluzo, B.M.T.C.; Makoś, M.Z.; Moura, Jr., R.T.; Freindorf, M.; Kraka, E.Inorg.Chem.2023, 62, 12510.
(m) Shivaraam R.A.K.; Keener M.; Modder D.K.; Rajeshkumar T.; Zivkovic I.; Scopelliti R.; Maron L.; Mazzanti, M.Angew.Chem.Int.Ed.2023, 62, e202304051.
(n) Wedal J.C.; Moore W.N.G.; Lukens W.W.; Evans, W.J.Inorg.Chem.2024, 63, 2945.
[5] (a) Arnaudet L.; Bougon R.; Buu B.; Lance M.; Nierlich M.; Vigner J.Inorg.Chem.1994, 33, 4510.
(b) Rivière C.; Nierlich M.; Ephritikhine M.; Madic C.Inorg.Chem.2001, 40, 4428.
(c) Mehdoui, T.; Berthet, J.-C.; Thuéry, P.; Ephritikhine, M.Dalton Trans.2004, 579.
(d) Ren W.; Zi G.; Walter M.D.Organometallics2012, 31, 672.
(e) Ren W.; Song H.; Zi G.; Walter, M.D.Dalton Trans.2012, 41, 5965.
(f) Ren W.; Lukens W.W.; Zi G.; Maron L.; Walter, M.D.Chem.Sci.2013, 4, 1168.
(g) Berthet J.-C.; Thuéry P.; Garin N.; Dognon J.-P.; Cantat T.; Ephritikhine, M.J.Am.Chem.Soc.2013, 135, 10003.
(h) Berthet J.-C.; Thuéry P.; Ephritikhine, M.C.R.Chim.2014, 17, 526.
(i) Yang, P.; Zhou, E.; Fang, B.; Hou, G.; Zi, G.; Walter, M.D.Organometallics 2016, 35, 2129.
(j) Garner M.E.; Hohloch S.; Maron L.; Arnold J.Organometallics2016, 35, 2915.
(k) Garner M.E.; Hohloch S.; Maron L.; Arnold, J.Angew.Chem.Int.Ed.2016, 55, 13789.
(l) Garner M.E.; Arnold J.Organometallics2017, 36, 4511.
(m) Yang, P.-K.M.S.Thesis, Beijing Normal University, Beijing, 2017 (in Chinese).
(杨丕堃, 硕士论文, 北京师范大学, 北京, 2017).
(n) Ringgold, M.; Wu, W.; Stuber, M.; Kornienko, A.Y.; Emge, T.J.; Brennan, J.G.Dalton Trans.2018, 47, 14652.
(o) Mikeska, E.R.; Ervin, A.C.; Zhang, K.; Benitez, G.M.; Powell, S.M.R.; Oliver, A.G.; Day, V.W.; Caricato, M.; Comadoll, C.G.; Blakemore, J.D.Inorg.Chem.2023, 62, 16131.
(p) Heng, Y.M.S.Thesis, Beijing Normal University, Beijing, 2023 (in Chinese).
(衡义, 硕士论文, 北京师范大学, 北京, 2023).
(q) Xu H.; Lv Z.-J.; Chen X.; Xi Z.; Wei J.Inorg.Chem.2024, 63, 5530.
(r) Wang, D.; Heng, Y.; Li, T.; Zi, G.; Walter, M.D.Organometallics 2024, 43, 1557.
(s) Wang D.; Heng Y.; Li T.; Ding W.; Hou G.; Zi G.; Walter, M.D.Inorg.Chem.2024, 63, 19188.
(t)Wang S.; Wang D.; Heng Y.; Li T.; Ding W.; Zi G.; Walter, M.D.Inorg.Chem.2024, 63, 7473.
(u) Wang, D.; Heng, Y.; Hou, G.; Zi, G.; Walter, M.D.Organometallics 2025, 44, 207.
(v) Wang, D.-W. Ph.D.Dissertation, Beijing Normal University, Beijing, 2025 (in Chinese).
(王东伟, 博士论文, 北京师范大学, 北京, 2025).
[6] (a) Scott, P.; Hitchcock, P.B.J.Chem.Soc, Chem.Commun.1995, 579.
(b) Kaltsoyannis, N.J.Chem.Soc., Dalton Trans.1996, 1583.
(c) Manni, G.L.; Walensky, J.R.; Kraft, S.J.; Forrest, W.P.; Pérez, L.M.; Hall, M.B.; Gagliardi, L.; Bart, S.C.Inorg.Chem. 2012, 51, 2058.
(d) Mrutu, A.; Barnes, C.L.; Bart, S.C.; Walensky, J.R.Eur.J.Inorg.Chem.2013, 4050.
[7] (a) Anderson N.H.; Odoh S.O.; Williams U.J.; Lewis A.J.; Wagner G.L.; Pacheco J.L.; Kozimor S.A.; Gagliardi L.; Schelter E.J.; Bart, S.C.J.Am.Chem.Soc.2015, 137, 4690.
(b) Galley, S.S.; Higgins, R.; Kiernicki, J.J.; Lopez, L.M.; Walensky, J.R.; Schelter, E.J.; Zeller, M.; Bart, S.C.Inorg.Chem.2023, 62, 15819.
[8] (a) Van der Sluys, W.G.; Burns, C.J.; Huffman, J.C.; Sattelberger, A.P.J.Am.Chem.Soc.1988, 110, 5924.
(b) Korobkov I.; Gambarotta S.; Yap, G.P.A.Angew.Chem.Int.Ed.2003, 42, 814.
(c) Korobkov I.; Gambarotta S.; Yap, G.P.A.Angew.Chem.Int.Ed.2003, 42, 4958.
(d) Cole, M.L.; Deacon, G.B.; Junk, P.C.; Proctor, K.M.; Scott, J.L.; Strauss, C.R.Eur.J.Inorg.Chem.2005, 2005, 4138.
(e) Korobkov I.; Gorelsky S.; Gambratta, S.J.Am.Chem.Soc.2009, 131, 10406.
(f) Bart, S.C.; Heinemann, F.W.; Anthon, C.; Hauser, C.; Meyer, K.Inorg.Chem.2009, 48, 9419.
(g) Lam, O.P.; Bart, S.C.; Kameo, H.; Heinemann, F.W.; Meyer, K.Chem.Commun.2010, 46, 3137.
(h) Korobkov, I.; Vidjayacoumar, B.; Gorelsky, S.I.; Billone, P.; Gambarotta, S.Organometallics 2010, 29, 692.
(i) Castro, L.; Lam, O.P.; Bart, S.C.; Meyer, K.; Maron, L.Organometallics 2010, 29, 5504.
(j) Mills, D.P.; Moro, F.; McMaster, J.; van Slageren, J.; Lewis, W.; Blake, A.J.; Liddle, S.T.Nat.Chem.2011, 3, 454.
(k) Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T.Angew.Chem., Int.Ed.2011, 50, 10388.
(l) Patel, D.; Tuna, F.; McInnes, E.J.L.; McMaster, J.; Lewis, W.;Blake, A.J.; Liddle, S.T.Dalton Trans.2013, 42, 5224.
(m) Vlaisavljevich B.; Diaconescu P.L.; Lukens, Jr.W.L.; Gagliardi L.; Cummins, C.C.Investigations of the Electronic Structure of Arene-Bridged Diuranium Complexes.Organometallics2013, 32, 1341.
(n) La Pierre, H.S.; Kameo, H.; Halter, D.P.; Heinemann, F.W.; Meyer, K.Angew.Chem., Int.Ed.2014, 53, 7154.
(o) McKinven, J.; Nichol, G.S.; Arnold, P.L.Dalton Trans.2014, 43, 17416.
(p) Arnold, P.L.; Farnaby, J.H.; White, R.C.; Kaltsoyannis, N.; Gardiner, M.G.; Love, J.B.Chem.Sci.2014, 5, 756.
(q) Arnold, P.L.; Stevens, C.J.; Farnaby, J.H.; Gardiner, M.G.; Nichol, G.S.; Love, J.B.J.Am.Chem.Soc.2014, 136, 10218.
(r) Arnold, P.L.; Farnaby, J.H.; Gardiner, M.G.; Love, J.B.Organometallics 2015, 34, 2114.
(s) Halter, D.P.; Heinemann, F.W.; Bachmann, J.; Meyer, K.Nature 2016, 530, 317.
(t) Suvova, M.; O’Brien, K.T.P.; Farnaby, J.H.; Love, J.B.; Kaltsoyannis, N.; Arnold, P.L.Organometallics 2017, 36, 4669.
(u) Inman, C.J.; Frey, A.S.P.; Kilpatrick, A.F.R.; Cloke, F.G.N.; Roe, S.M.Organometallics 2017, 36, 4539.
(v) Fortier, S.; Aguilar-Calderón, J.R.; Vlaisavljevich, B.; Metta-Magaña, A.J.; Goos, A.G.; Botez, C.E.Organometallics 2017, 36, 4591.
(w) Halter, D.P.; Heinemann, F.W.; Maron, L.; Meyer, K.Nat.Chem.2018, 10, 259.
(x) Wooles, A.J.; Mills, D.P.; Tuna, F.; McInnes, E.J.L.; Law, G.T.W.; Fuller, A.J.; Kremer, F.; Ridgway, M.; Lewis, W.; Gagliardi, L.; Vlaisavljevich, B.; Liddle, S.T.Nat.Commun.2018, 9, 2097.
(y) Yadav, M.; Metta-Magaña, A.; Fortier, S.Chem.Sci.2020, 11, 2381.
(z) Yu C.; Liang J.; Deng C.; Lefevre G.; Cantat T.; Diaconescu P.L.; Huang, W.J.Am.Chem.Soc.2020, 142, 21292.
(aa) Pividori, D.; Miehlich, M.E.; Kestel, B.; Heinemann, F.W.; Scheurer, A.; Patzschke, M.; Meyer, K.Inorg.Chem.2021, 60, 16455.
(ab) Lam, F.Y.T.; Wells, J.A.L.; Ochiai, T.; Halliday, C.J.V.; McCabe, K.N.; Maron, L.; Arnold, P.L.Inorg.Chem.2022, 61, 4581.
(ac) Hsueh, F.-C.; Chen, D.; Rajeshkumar, T.; Scopelliti, R.; Maron, L.; Mazzanti, M.Angew.Chem., Int.Ed.2023, 63, e202317346.
(ad) Gaunt, A.; Murillo, J.; Goodwin, C.A.P.; Stevens, L.; Fortier, S.; Scott, B.Chem.Sci.2023, 14, 7438.
(ae) Hsueh F.C.; Rajeshkumar T.; Kooij B.; Scopelliti R.; Severin K.; Maron L.; Zivkovic I.; Mazzanti, M.Angew.Chem.Int.Ed.2023, 62, e202215846.
(af) Hsueh F.-C.; Chen D.; Rajeshkumar T.; Scopelliti R.; Maron L.; Mazzanti, M.Angew.Chem.Int.Ed.2023, 62, e202317346.
(ag) Deng C.; Liang J.; Wang Y.; Huang W.Inorg.Chem.2024, 63, 9676.
(ah) Anderson-Sanchez, L.M; Rajabi, A; Wedal, J.C; Ziller, J.W; Furche, F; Evans.W.[J].Organometallics 2024, 43, 2027.
(ai) Wang Y.; Sun R.; Liang J.; Zhang Y.; Tan B.; Deng C.; Wang Y.-H.; Wang B.-W.; Gao S.; Huang, W.J.Am.Chem.Soc.2025, 147, 7741.
[9] (a) Evans, W.J.; Miller, K.A.; Kozimor, S.A.; Ziller, J.W.; DiPasquale, A.G.; Rheingold, A.L.Organometallics 2007, 26, 3568.
(b) Schelter, E.J.; Wu, R.; Veauthier, J.M.; Bauer, E.D.; Booth, C.H.; Thomson, R.K.; Graves, C.R.; John, K.D.; Scott, B.L.; Thompson, J.D.; Morris, D.E.; Kiplinger, J.L.Inorg.Chem. 2010, 49, 1995.
(c) Zhang L.; Hou G.; Zi G.; Ding W.; Walter, M.D.J.Am.Chem.Soc.2016, 138, 5130.
(d) Zhang L.; Fang B.; Hou G.; Ai L.; Ding W.; Walter M.D.; Zi G.Dalton Trans.2016, 45, 16441.
(e) Garner M.E.; Arnold J.Organometallics2017, 36, 4511.
(f) Rungthanaphatsophon P.; Barnes C.L.; Kelley S.P.; Walensky, J.R.Dalton Trans.2018, 47, 8189.
(g) Qin, G.; Wang, Y.; Shi, X.; Rosal, I.D.; Maron, L.; Cheng, J.Chem.Commun.2019, 55, 8560.
(h) Wang D.; Ding W.; Hou G.; Zi G.; Walter, M.D.Chem.Eur.J.2020, 26, 16888.
(i) Tsoureas N.; Maron L.; Kilpatrick A.F.R.; Layfield R.A.; Cloke, F.G.N.J.Am.Chem.Soc.2020, 142, 89.
(j) Mazzanti M.; Scopelliti R.; Laurent M.; Douair I.; Palumbo C.; Modder D.Chem.Sci.2021, 12, 6153.
(k) Modder D.K.; Palumbo C.T.; Douair I.; Fadaei-Tirani F.; Maron L.; Mazzanti, M.Angew.Chem.Int.Ed.2021, 60, 3737.
(l) Wang D.; Ding W.; Hou G.; Zi G.; Walter, M.D.Chem.Eur.J.2021, 27, 6767.
(m) Rupasinghe D.M.R.Y.P.; Gupta H.; Baxter M.R.; Higgins R.F.; Zeller M.; Schelter E.J.; Bart, S.C.Inorg.Chem.2021, 60, 14302.
(n) Galley S.S.; Pattenaude S.A.; Ray D.; Gaggioli C.A.; Whitefoot M.A.; Qiao Y.; Higgins R.F.; Nelson W.L.; Baumbach R.; Sperling J.M.; Zeller M.; Collins T.S.; Schelter E.J.; Gagliardi L.; Albrecht-Schönzart T.E.; Bart, S.C.Inorg.Chem.2021, 60, 15242.
(o) Boreen M.A.; Ye C.Z.; Kerridge A.; McCabe K.N.; Skeel B.A.; Maron L.; Arnold J.Inorg.Chem.2022, 61, 8955.
(p) Rupasinghe D.M.R.Y.P.; Baxter M.R.; Gupta H.; Poore A.T.; Higgins R.F.; Zeller M.; Tian S.; Schelter E.J.; Bart, S.C.J.Am.Chem.Soc.2022, 144, 17423.
[10] (a) Herzog S.; Oberender H.Z.Chem.1963, 3, 429.
(b) Del Piero G.; Perego G.; Zazzetta A.; Brandi, G.Cryst.Struct.Commun.1975, 4, 521.
(c) Fortier, S.; Veleta, J.; Pialat, A.; Le Roy, J.; Ghiassi, K.B.; Olmstead, M.M.; Metta-Magaña, A.; Murugesu, M.; Villagrán, D.Chem.Eur.J. 2016, 22, 1931.
[11] Schake A.R.; Avens L.R.; Burns C.J.; Clark D.L.; Sattelberger A.P.; Smith W.H.Organometallics1993, 12, 1497.
[12] Maria L.; Domingos Â.; Galvão A.; Ascenso J.; Santos I.Inorg.Chem.2004, 43, 6426.
[13] Mehdoui T.; Berthet J.-C.; Thuéry P.; Salmon L.; Rivière E.; Ephritikhine, M.Chem.Eur.J.2005, 11, 6994.
[14] Mohammad A.; Cladis D.P.; Forrest W.P.; Fanwick P.E.; Bart, S.C.Chem.Commun.2012, 48, 1671.
[15] (a) Pagano J.K.; Dorhout J.M.; Waterman R.; Czerwinski K.R.; Kiplinger, J.L.Chem.Commun.2015, 51, 17379.
(b) Pagano J.K.; Dorhout J.M.; Czerwinski K.R.; Morris D.E.; Scott B.L.; Waterman R.; Kiplinger J.L.Organometallics2016, 35, 617.
[16] Zhang, L; Zhang C.; Hou G.; Zi G.; Walter M.D.Organometallics2017, 36, 1179.
[17] (a) Spencer L.P.; Schelter E.J.; Yang P.; Gdula R.L.; Scott B.L.; Thompson J.D.; Kiplinger J.L.; Batista E.R.; Boncella, J.M.Angew.Chem.Int.Ed.2009, 48, 3795.
(b) Spencer L.P.; Yang P.; Scott B.L.; Batista E.R.; Boncella, J.M.Inorg.Chem.2009, 48, 11615.
(c) Jilek R.E.; Spencer L.P.; Kuiper D.L.; Scott B.L.;.Williams, U.J; Kikkawa, J.M.; Schelter E.J.; Boncella, J.M.Inorg.Chem.2011, 50, 4235.
[18] Takase M.K.; Fang M.; Ziller J.W.; Furche F.; Evans, W.J.Inorg.Chim.Acta2010, 364, 167.
[19] (a) Kraft S.J.; Fanwick P.E.; Bart, S.C.Inorg.Chem.2010, 49, 1103.
(b) Kraft S.J.; Walensky J.; Fanwick P.E.; Hall M.B.; Bart, S.C.Inorg.Chem.2010, 49, 7620.
[20] Rosenzweig M.W.; Heinemann F.W.; Maron L.; Meyer K.Inorg.Chem.2017, 56, 2792.
[21] Wang S.; Li T.; Heng Y.; Wang D.; Hou G.; Zi G.; Walter, M.D.Inorg.Chem.2022, 61, 6234.
[22] Wang S.; Wang D.; Li T.; Heng Y.; Hou G.; Zi G.; Walter M.D.Organometallics2022, 41, 1543.
[23] Heng Y.; Li T.; Wang D.; Hou G.; Zi G.; Walter M.D.Organometallics2023, 42, 91.
[24] (a) Zi G.; Jia L.; Werkema E.L.; Walter M.D.; Gottfriedsen J.P.; Andersen R.A.Organometallics2005, 24, 4251.
(b) Li T.; Wang D.; Heng Y.; Hou G.; Zi G.; Walter M.D.Organometallics2023, 42, 392.
[25] Modder D.K.; Scopelliti R.; Mazzanti M.Inorg.Chem.2024, 63, 9527.
[26] Schelter E.J.; Wu R.; Scott B.L.; Thompson J.D.; Cantat T.; John K.D.; Batista E.R.; Morris D.E.; Kiplinger, J.L.Inorg.Chem.2010, 49, 924.
[27] Kraft S.J.; Williams U.J.; Daly S.R.; Schelter E.J.; Kozimor S.A.; Boland K.S.; Kikkawa J.M.; Forrest W.P.; Christensen C.N.; Schwarz D.E.; Fanwick P.E.; Clark D.L.; Conradson S.D.; Bart, S.C.Inorg.Chem.2011, 50, 9838.
[28] Kiernicki J.J.; Newell B.S.; Matson E.M.; Anderson N.H.; Fanwick P.E.; Shores M.P.; Bart, S.C.Inorg.Chem.2014, 53, 3730.
[29] Anderson N.H.; Odoh S.O.; Yao Y.; Williams U.J.; Schaefer B.A.; Kiernicki J.J.; Lewis A.J.; Goshert M.D.; Fanwick P.E.; Schelter E.J.; Walensky J.R.; Gagliardi L.; Bart, S.C.Nat.Chem.2014, 6, 919.
[30] Kiernicki J.J.; Cladis D.P.; Fanwick P.E.; Zeller M.; Bart, S.C.J.Am.Chem.Soc.2015, 137, 11115.
[31] Richardson G.M.; Rajeshkumar T.; Burke F.M.; Cameron S.A.; Nicholls B.D.; Harvey J.E.; Keyzers R.A.; Butler T.; Granville S.; Liu L.; Langley J.; Lim L.F.; Cox N.; Chilton N.F.; Hicks J.; Davis N.J.L.K.; Maron L.; Anker, M.D.Nat.Chem.2025, 17, 20.
[32] Diaconescu P.L.; Arnold P.L.; Baker T.A.; Mindiola D.J.; Cummins C.C.J.Am.Chem.Soc.2000, 122, 6108.
[33] Diaconescu P.L.; Cummins, C.C.J.Am.Chem.Soc.2002, 124, 7660.
[34] (a) Evans W.J.; Kozimor S.A.; Ziller J.W.; Kaltsoyannis, N.J.Am.Chem.Soc.2004, 126, 14533.
(b) Evans, W.J.; Kozimor, S.A.; Ziller, J.W.Chem.Commun.2005, 4681.
(c) Evans W.J.; Traina C.A.; Ziller, J.W.J.Am.Chem.Soc.2009, 131, 17473.
[35] Diaconescu P.L.; Cummins C.C.Inorg.Chem.2012, 51, 2902.
[36] (a) Mougel V.; Camp C.; Pécaut J.; Copéret C.; Maron L.; Kefalidis C.E.; Mazzanti, M.Angew.Chem.Int.Ed.2012, 51, 12280.
(b) Camp, C.; Mougel, V.; Pécaut, J.; Maron, L.; Mazzanti, M.Chem.Eur.J.2013, 19, 17528.
[37] (a) Arnold P.L.; Mansell S.M.; Maron L.; McKay D.Nat.Chem.2012, 4, 668.
(b) Arnold P.L.; Halliday C.J.V.; Puig-Urrea L.; Nichol, G.S.Inorg.Chem.2021, 60, 4162.
[38] Deng C.; Liang J.; Sun R.; Wang Y.; Fu P.-X.; Wang B.-W.; Gao S.; Huang W.Nat.Commun.2023, 14, 4657.
[39] Deng C; Li Y.L; Wang Y; Huang W.Angew.Chem.Int.Ed.2024, e202419987.
[40] Deng C.; Yang Y.; Wang Y.; Huang, W.Inorg.Chem.Front.2024, 11, 7483.
[41] Deng C.; Xu X.-C.; Sun R.; Wang Y.; Wang B.-W.; Hu H.-S.; Huang W.Organometallics 2024, 43, 174.
[42] Fang W.; Li Y.; Zhang T.; Rajeshkumar T.; del Rosal I.; Zhao Y.; Wang T.; Wang S.; Maron L.; Zhu, C.Angew.Chem.Int.Ed.2024, 63, e202407339.
[43] Patel D.; Tuna F.; McInnes, E.J.L.; Lewis, W.; Blake, A.J.; Liddle, S.T.Angew.Chem., Int.Ed.2013, 52, 13334.
[44] (a) Praneeth V.K.K.; Ringenberg M.R.; Ward, T.R.Angew.Chem.Int.Ed.2012, 51, 10228.
(b) Lyaskovskyy V.; de Bruin, B.ACS Catal.2012, 2, 270.
(c) Nakada A.; Matsumoto T.; Chang, H.-C.Coord.Chem.Rev.2022, 473, 214804.
(d) Singh K.; Kundu A.; Adhikari D.2022, 12, 13075.
(e) Briand, G.G.Dalton Trans. 2023, 52, 17666.
(f) Karnbrock S.B.H.; Alcarazo, M.Chem.Eur.J.2024, 30, e202302879.
(g) Murr, M.D.-E.Redox‐Active Ligands: Concepts and Catalysis.Wiley‐VCH GmbH, Weinheim, Germany 2024.
文章导航

/