Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (5): 2082-2090.DOI: 10.6023/cjoc202011015 Previous Articles Next Articles
ARTICLES
朱三娥1,*(
), 豆礼锋1, 张建辉1, 吴缨1, 杨伟1, 鲁红典1, 卫春祥1, 邓崇海1, 董强1,*(
)
收稿日期:2020-11-10
修回日期:2020-12-16
发布日期:2021-02-22
通讯作者:
朱三娥, 董强
基金资助:
San'e Zhu1,*(
), Lifeng Dou1, Jianhui Zhang1, Ying Wu1, Wei Yang1, Hongdian Lu1, Chunxiang Wei1, Chonghai Deng1, Qiang Dong1,*(
)
Received:2020-11-10
Revised:2020-12-16
Published:2021-02-22
Contact:
San'e Zhu, Qiang Dong
About author:Supported by:Share
San'e Zhu, Lifeng Dou, Jianhui Zhang, Ying Wu, Wei Yang, Hongdian Lu, Chunxiang Wei, Chonghai Deng, Qiang Dong. Palladium-Catalyzed Synthesis of Dihydrofuran-Fused [60]Fullerene Derivatives via Heteroannulation of Olefins[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2082-2090.
| Entry | Catalyst | Oxidant | Baseb | Acidc | Yieldd/% |
|---|---|---|---|---|---|
| 1 | Pd(OAc)2 | Cu(OAc)2 | — | — | 0 |
| 2 | Pd(OAc)2 | (NH4)2S2O8 | — | — | 0 |
| 3 | Pd(OAc)2 | K2S2O8 | — | — | 0 |
| 4 | Pd(OAc)2 | Oxone | — | — | 0 |
| 5 | Pd(OAc)2 | Ag2CO3 | — | — | 0 |
| 6 | Pd(OAc)2 | Cu(TFA)2 | — | — | 15 |
| 7 | Pd(OAc)2 | Cu(OTf)2 | — | — | 31 |
| 8 | — | Cu(OTf)2 | — | — | 0 |
| 9 | Pd(TFA)2 | Cu(OTf)2 | — | — | 23 |
| 10 | Pd(CH3CN)4(OTf)2 | Cu(OTf)2 | — | — | 22 |
| 11 | PdCl2 | Cu(OTf)2 | — | — | 38 |
| 12 | PdCl2 | Cu(OTf)2 | Na2CO3 | — | 18 |
| 13 | PdCl2 | Cu(OTf)2 | K2CO3 | — | 29 |
| 14 | PdCl2 | Cu(OTf)2 | NaOAc?3H2O | — | 23 |
| 15 | PdCl2 | Cu(OTf)2 | NaHCO3 | — | trace |
| 16 | Pd(TFA)2 | Cu(OAc)2 | — | TFA | trace |
| 17 | Pd(CH3CN)4(OTf)2 | Cu(OAc)2 | — | CF3SO3H | 23 |
| 18 | PdCl2 | Cu(OAc)2 | — | CF3SO3H | 33 |
| 19e | PdCl2 | Cu(OTf)2 | — | — | 30 |
| 20f | PdCl2 | Cu(OTf)2 | — | — | 11 |
| 21g | PdCl2 | Cu(OTf)2 | — | — | 31 |
| 22h | PdCl2 | Cu(OTf)2 | — | — | 9 |
| 23i | PdCl2 | Cu(OTf)2 | — | — | 0 |
| Entry | Catalyst | Oxidant | Baseb | Acidc | Yieldd/% |
|---|---|---|---|---|---|
| 1 | Pd(OAc)2 | Cu(OAc)2 | — | — | 0 |
| 2 | Pd(OAc)2 | (NH4)2S2O8 | — | — | 0 |
| 3 | Pd(OAc)2 | K2S2O8 | — | — | 0 |
| 4 | Pd(OAc)2 | Oxone | — | — | 0 |
| 5 | Pd(OAc)2 | Ag2CO3 | — | — | 0 |
| 6 | Pd(OAc)2 | Cu(TFA)2 | — | — | 15 |
| 7 | Pd(OAc)2 | Cu(OTf)2 | — | — | 31 |
| 8 | — | Cu(OTf)2 | — | — | 0 |
| 9 | Pd(TFA)2 | Cu(OTf)2 | — | — | 23 |
| 10 | Pd(CH3CN)4(OTf)2 | Cu(OTf)2 | — | — | 22 |
| 11 | PdCl2 | Cu(OTf)2 | — | — | 38 |
| 12 | PdCl2 | Cu(OTf)2 | Na2CO3 | — | 18 |
| 13 | PdCl2 | Cu(OTf)2 | K2CO3 | — | 29 |
| 14 | PdCl2 | Cu(OTf)2 | NaOAc?3H2O | — | 23 |
| 15 | PdCl2 | Cu(OTf)2 | NaHCO3 | — | trace |
| 16 | Pd(TFA)2 | Cu(OAc)2 | — | TFA | trace |
| 17 | Pd(CH3CN)4(OTf)2 | Cu(OAc)2 | — | CF3SO3H | 23 |
| 18 | PdCl2 | Cu(OAc)2 | — | CF3SO3H | 33 |
| 19e | PdCl2 | Cu(OTf)2 | — | — | 30 |
| 20f | PdCl2 | Cu(OTf)2 | — | — | 11 |
| 21g | PdCl2 | Cu(OTf)2 | — | — | 31 |
| 22h | PdCl2 | Cu(OTf)2 | — | — | 9 |
| 23i | PdCl2 | Cu(OTf)2 | — | — | 0 |
| [1] |
Gaspar, H.; Figueira, F.; Pereira, L.; Mendes, A.; Viana, J. C.; Bernardo, G. Materials 2018, 11, 2560.
doi: 10.3390/ma11122560 |
| [2] |
Akiyama, T. Bull. Chem. Soc. Jpn. 2019, 92, 1181.
doi: 10.1246/bcsj.20190079 |
| [3] |
Umeyama, T.; Imahori, H. Acc. Chem. Res. 2019, 52, 2046.
doi: 10.1021/acs.accounts.9b00159 |
| [4] |
Speller, E. M.; Clarke, A. J.; Luke, J.; Lee, H. K. H.; Durrant, J. R.; Li, N.; Wang, T.; Wong, H. C.; Kim, J.-S.; Tsoi, W. C.; Li, Z. J. Mater. Chem. A 2019, 7, 23361.
doi: 10.1039/c9ta05235f |
| [5] |
Wan, X.; Li, C.; Zhang, M.; Chen, Y. Chem. Soc. Rev. 2020, 49, 2828.
doi: 10.1039/D0CS00084A |
| [6] |
Cheng, P.; Shi, Q.; Zhan, X. Acta Chim. Sinica 2015, 73, 252. (in Chinese).
doi: 10.6023/A14080607 |
|
(程沛, 史钦钦, 占肖卫, 化学学报, 2015, 73, 252.)
doi: 10.6023/A14080607 |
|
| [7] |
Sun, Y.; Gao, H.; Zhang, Y.; Wang, Y.; Kan, B.; Wan, X.; Zhang, H.; Chen, Y. Chin. J. Org. Chem. 2018, 38, 228. (in Chinese).
doi: 10.6023/cjoc201706026 |
|
(孙延娜, 高欢欢, 张雅敏, 王云闯, 阚斌, 万相见, 张洪涛, 陈永胜, 有机化学, 2018, 38, 228.)
doi: 10.6023/cjoc201706026 |
|
| [8] |
Yao, S.; Yuan, X.; Jiang, L.; Xiong, T.; Zhang, J. Materials 2020, 13, 2924.
doi: 10.3390/ma13132924 |
| [9] |
Pan, Y.; Liu, X.; Zhang, W.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; He, Q.; Yuan, X.; Huang, D.; Chen, M. Appl. Catal. B: Environ. 2020, 265, 118579.
doi: 10.1016/j.apcatb.2019.118579 |
| [10] |
Krokosz, A.; Lichota, A.; Nowak, K. E.; Grebowski, J. Radiat. Phys. Chem. 2016, 128, 143.
doi: 10.1016/j.radphyschem.2016.07.006 |
| [11] |
Ghasemzadeh, P.; Rezayat, S. M.; Adeli, S.; Rahbar-Roshandel, N. Acta Med. Iran. 2016, 54, 478.
pmid: 27701717 |
| [12] |
Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Mater. Today 2017, 20, 460.
doi: 10.1016/j.mattod.2017.03.017 |
| [13] |
Rašović, I. Mater. Sci. Technol. 2017, 33, 777.
doi: 10.1080/02670836.2016.1198114 |
| [14] |
Pochkaeva, E. I.; Podolsky, N. E.; Zakusilo, D. N.; Petrov, A. V.; Charykov, N. A.; Vlasov, T. D.; Penkova, A. V.; Vasina, L. V.; Murin, I. V.; Sharoyko, V. V.; Semenov, K. N. Prog. Solid State Chem. 2020, 57, 100255.
doi: 10.1016/j.progsolidstchem.2019.100255 |
| [15] |
Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions, Wliey-VCH, Weinheim, Germany, 2005.
|
| [16] |
Kadish, K. M.; Ruoff, R. S. Fullerenes: Chemistry, Physics, and Technology, Wiley, New York,2000.
|
| [17] |
Martín, N. Chem. Commun. 2006,2093.
|
| [18] |
Shi, L.; Wang, C.; Xu, Y.; Wang, Q. Chin. J. Org. Chem. 2015, 35, 1537. (in Chinese).
doi: 10.6023/cjoc201502003 |
|
(史玲, 王彩芳, 徐雨, 汪秋安, 有机化学, 2015, 35, 1537.)
doi: 10.6023/cjoc201502003 |
|
| [19] |
Chen, S.; Liu, H.; Liu, Z.; Li, S.; Chen, Y.; Li, H.; Li, D.; Zhang, W. Chin. J. Org. Chem. 2020, 40, 209. (in Chinese).
doi: 10.6023/cjoc201907041 |
|
(陈书帅, 刘洪新, 刘昭明, 李赛妮, 陈玉婵, 李浩华, 李冬利, 章卫民, 有机化学, 2020, 40, 209.)
doi: 10.6023/cjoc201907041 |
|
| [20] |
Kornsakulkarn, J.; Saepua, S.; Srichomthong, K.; Supothina, S.; Thongpanchang, C. Tetrahedron 2012, 68, 8480.
doi: 10.1016/j.tet.2012.07.059 |
| [21] |
Li, S.; Hu, J.; Zhang, L.; Zhang, L.; Sun, Y.; Xie, Y.; Wu, S.; Liu, L.; Gao, Z. J. Pharm. Pharmacol. 2013, 65, 355.
doi: 10.1111/j.2042-7158.2012.01606.x |
| [22] |
Husain, A.; Khan, S. A.; Iram, F.; Iqbal, M. A.; Asif, M. Eur. J. Med. Chem. 2019, 171, 66.
doi: S0223-5234(19)30238-7 pmid: 30909021 |
| [23] |
Lien, J.-C.; Lin, C.-S.; Lai, H.-C.; Tsai, Y.-C.; Lin, Y.-F.; Huang, A.-C.; Huang, S.-H.; Lin, C.-W. Bioorg. Med. Chem. Lett. 2019, 29, 126742.
doi: 10.1016/j.bmcl.2019.126742 |
| [24] |
Ohno, M.; Yashiro, A.; Eguchi, S. Chem. Commun. 1996,291.
|
| [25] |
Chen, S.; Li, Z.-J.; Gao, X. J. Org. Chem. 2016, 81, 121.
doi: 10.1021/acs.joc.5b02392 |
| [26] |
Yang, H.-L.; Xu, L.-J.; Li, W.-Z.; Sun, T.; Duan, B.-R.; Chen, S.; Gao, X. RSC Adv. 2020, 10, 24549.
doi: 10.1039/D0RA04996D |
| [27] |
Zhang, T.-H.; Wang, G.-W.; Lu, P.; Li, Y.-J.; Peng, R.-F.; Liu, Y.-C.; Murata, Y.; Komatsu, K. Org. Biomol. Chem. 2004, 2, 1698.
doi: 10.1039/b403027c |
| [28] |
Cheng, X.; Wang, G. W.; Murata, Y.; Komatsu, K. Chin. Chem. Lett. 2005, 16, 1327.
|
| [29] |
Wang, G.-W.; Li, F.-B. Org. Biomol. Chem. 2005, 3, 794.
doi: 10.1039/b416756b |
| [30] |
Li, F.; Zhu, S.; You, X.; Wang, G. Chin. Sci. Bull. 2012, 57, 2269.
|
| [31] |
Li, C.; Zhang, D.; Zhang, X.; Wu, S.; Gao, X. Org. Biomol. Chem. 2004, 2, 3464.
doi: 10.1039/B411862F |
| [32] |
Xia, S.; Liu, T.-X.; Zhang, P.; Ma, J.; Liu, Q.; Ma, N.; Zhang, Z.; Zhang, G. J. Org. Chem. 2018, 83, 862.
doi: 10.1021/acs.joc.7b02848 |
| [33] |
Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
doi: 10.1021/cr300100s |
| [34] |
Li, J.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front. 2020, 7, 1395.
doi: 10.1039/D0QO00377H |
| [35] |
Li, J.; Yang, S.; Wu, W.; Jiang, H. Chem. Asian J. 2019, 14, 4114.
doi: 10.1002/asia.v14.23 |
| [36] |
Ma, X.; Yu, J.; Wang, Z.; Zhang, Y.; Zhou, Q. Chin. J. Org. Chem. 2020, 40, 2669. (in Chinese).
doi: 10.6023/cjoc202005013 |
|
(马献涛, 于静, 王子龙, 张赟, 周秋菊, 有机化学, 2020, 40, 2669.)
doi: 10.6023/cjoc202005013 |
|
| [37] |
Zhu, B.; Wang, G.-W. Org. Lett. 2009, 11, 4334.
doi: 10.1021/ol901675t |
| [38] |
Su, Y.-T.; Wang, Y.-L.; Wang, G.-W. Org. Chem. Front. 2014, 1, 689.
doi: 10.1039/C4QO00106K |
| [39] |
Hussain, M.; Niu, C.; Wang, G.-W. Org. Chem. Front. 2020, 7, 1249.
doi: 10.1039/D0QO00264J |
| [40] |
Wang, C.; Liu, Z.; Yin, Z.-C.; Wang, G.-W. Org. Chem. Front. 2020, 7, 2518.
doi: 10.1039/D0QO00710B |
| [41] |
Li, F.; Wang, J.-J.; Wang, G.-W. Chem. Commun. 2017, 53, 1852.
doi: 10.1039/C6CC09080J |
| [42] |
Yan, Y.-T.; Gao, W.; Jin, B.; Shan, D.-S.; Peng, R. F.; Chu, S.-J. J. Org. Chem. 2018, 83, 672.
doi: 10.1021/acs.joc.7b02620 |
| [43] |
Dai, C.; Han, Y.; Liu, L.; Huang, Z.-B.; Shi, D.-Q.; Zhao, Y. Org. Chem. Front. 2020, 7, 1703.
doi: 10.1039/C9QO01523J |
| [44] |
Zhang, J.; Han, L.; Bi, S.; Liu, T. J. Org. Chem. 2020, 85, 8387.
doi: 10.1021/acs.joc.0c00721 |
| [45] |
Kumar, P.; Kapur, M. Org. Lett. 2019, 21, 2134.
doi: 10.1021/acs.orglett.9b00446 |
| [46] |
Wright, J. A.; Gaunt, M. J.; Spencer, J. B. Chem. Eur. J. 2006, 12, 949.
doi: 10.1002/(ISSN)1521-3765 |
| [1] | Luomo Li, Xiaohui Yang. Recent Advances in Ionic Transfer Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1036-1044. |
| [2] | Hongyu Hou, Yuanyuan Cheng, Bin Chen, Chenho Tung, Lizhu Wu. α-Acylation of Olefins via Photocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1012-1022. |
| [3] | Ping Guo, Yong Zhou, Jie Zhao. Z∶E Selective Preparation of Disubstituted Internal Alkenes and Trisubstituted Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 855-872. |
| [4] | Zhaohua Chen, Xiying Cao, Sihong Chen, Shiwei Yu, Yanlan Lin, Shuting Lin, Zhaoyang Wang. Design, Synthesis and Application of Trisubstituted Olefinic Aggregation-Induced Emission Molecules [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2355-2363. |
| [5] | Huaiyuan Zhang, Thomas Wirth. Recent Advances in Asymmetric Functionalization of Olefins Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 65-70. |
| [6] | Bing Mu, Junliang Wu, Guang'an Zhang. Alternative Approach for the Synthesis of Nitroaromatic Olefins via Dehydrogenative Nitration of Easily Available Arylethanes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 250-257. |
| [7] | Chen Demao, Sun Yuanyuan, Dong Daoqing, Han Qingqing, Wang Zuli. Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions [J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4267-4273. |
| [8] | Wang Ligeng, Yu Qin, Feng Chun, Zhang Yan, Hu Jun. Efficient Synthesis of Dibromoalkanes and Iodoacetates from Olefins Using ZnAl-XO3--LDHs/LiX (X=Br, I) as Halogen Sources [J]. Chin. J. Org. Chem., 2019, 39(6): 1787-1793. |
| [9] | Zhang Hao, Yu Shouyun. Visible Light-Promoted Isomerization of Alkenes [J]. Chin. J. Org. Chem., 2019, 39(1): 95-108. |
| [10] | Yang Xin, Yang Wen, Deng Yingying, Yang Dingqiao. Progress in Transition-Metal Catalyzed Bicyclic Olefins Addition Reaction [J]. Chin. J. Org. Chem., 2017, 37(10): 2512-2525. |
| [11] | Mao Guoliang, Jia Bing, Wang Congyang. Recent Progress in Re-Catalyzed Dehydroxylation Reactions [J]. Chin. J. Org. Chem., 2015, 35(2): 284-293. |
| [12] | Wen Hua, Wang Yingjie, Liu Dee, Liu Yali, Ge Miao, Chen Zhanguo. Synthesis of Functionalized Enamines (Ⅱ):One-Pot Method for the Synthesis of α-Dehydroamino from Electron-Deficient Olefins [J]. Chin. J. Org. Chem., 2014, 34(5): 916-925. |
| [13] | DING Xiaa, LIN Zhong-Xiang*,a, DENG Hui-Minb. Reaction of C60 with Abietic Acid Catalyzed by ZnCl2 [J]. Chin. J. Org. Chem., 2007, 27(02): 252-254. |
| [14] | PENG, Ru-Fang*,a JIN, Boa CAO, Kuia SHU, Yuan-Jieb CHU, Shi-Jina. Study on the Synthetic Technology of Nitrofulleropyrrolidine [J]. Chin. J. Org. Chem., 2007, 27(02): 276-278. |
| [15] | CHEN Weib,ZENG He-Ping*,a,b. Recent Developments in Nonlinear Optical Properties of C60 and Its Derivatives [J]. Chin. J. Org. Chem., 2007, 27(01): 8-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||